ST JOSEPH'S COLLEGE FOR WOMEN (AUTONOMOUS) VISAKHAPATNAM DEPARTMENT OF ZOOLOGY

The Department of Zoology, St. Joseph's College for Women (A), offers Zoology as a core subject for undergraduate students in combination with chemistry and Botany as CBZ programme.

Programme Specific Outcomes of B.ScProgramme with Zoology.

PSOs: Students after graduating with Zoology as one of the core subjects will:

PSO1: Be able to demonstrate fundamental knowledge in core areas of zoology (Non-Chordates, Chordates, Cytology, Physiology, Genetics, Ecology, Evolution, Animal Biotechnology, Animal Husbandry, and Wildlife: Conservation, Diversity & Management and Aquaculture).

PSO2:Gain practical knowledge about classification through specimen observation, conduct laboratory experiments like analysis of Blood groups, Rh factor, Estimation of Hemoglobin, Blood Pressure, Dissolved oxygen etc, using safety and ethical standards.

PSO3: Be able to integrate knowledge gained in Zoology to General education courses.

PSO4: Engage in industry internship or gain skills through Hands on Experience in post-harvest technology in fishes to demonstrate relevancy of foundational and theoretical knowledge of their cluster subject and to gain career related experiences and to practice standard safety measures in sea food preservation.

PSO5: Able to develop critical thinking ,develop scientific attitude through model making and study projects where the learner is able to demonstrate the theoretical knowledge and conceptualize them and also learn to work collaboratively.

ASSESMENT METHODOLOGY

PSO1:Be able to demonstrate fundamental knowledge in core areas of zoology (Non-Chordates, Chordates, Cytology, Physiology, Genetics, Ecology, Evolution, Animal Biotechnology, Animal Husbandry, and Wildlife: Conservation, Diversity & Management and Aquaculture).

Direct method of computing PSO1attainment is based on the student performance in all assessment instruments namely online and offline –subjective and objective tests for all courses offered (Z). These exams test students learning at knowledge, understanding and application levels in the respective courses. Indirect method of computing PSOs is done through student's course exit survey wherein a structured questionnaire is administered to the students and their response is solicited on a 5 point scale. Responses are consolidated and students' satisfaction level with reference to course transaction is computed. Average percentage of level of attainments of all the courses in zoology is given below. –87.75%

PSO2:Gain practical knowledge about classification through specimen observation, conduct laboratory experiments like analysis of Blood groups, Rh factor, Estimation of Hemoglobin, Blood Pressure, Dissolved oxygen etc using safety and ethical standards.

PSO2 attainment level is ascertained through the Midsemester and End semester exams in every semester. This direct assessment involves testing students' knowledge on identifying specimens through observation study, procedures of experiments and their skill in executing them in all semesters.(89.2%).The practical skills learnt gives them an opportunity to pursue jobs in medical labs .

PSO3: Be able to integrate knowledge gained in Zoology to General education courses.

Assessment of this learning outcome is largely done through the undergraduate general education course namely environmental science .This course provides an opportunity for the students to apply zoology knowledge to understand the issues of environment ,natural resources ,biodiversity and pollution . Direct method of computing PSO3 attainment is based on the student performance in all assessment instruments namely formative and summative tests in courses on environment. -88.5%

PSO4 : Direct assessment is done through the twelve day internship which the students complete during their sixth semester, as it has clear learning outcomes like providing hands on experience on making value added productswhich improves their skill in Aquaculture field. After completion of the training students will submit internship report which is assessed for 10 marks based on viva voce individually and testing students' knowledge through an objective test conducted .

PSO5 : Assessment of this outcome is based on the student performance in executing the project or be able to show skill in model making for which marks are given.

Level of attainment measurement

Level of attainment of course outcomes includes both direct and indirect assessments. Direct assessment is done by testing the knowledge and/or skills of the student in that course by conducting standardised examinations. In indirect assessment we use the student feedback on course which is measured on 5 point scale. The sum of these two assessments is shown as the level of attainment of that course.

Assessment of all the theory courses is done in two parts, namely by formative assessment (40%) which is internal and summative assessment (60%) which is external. The evaluation of 100% of the assessment in each semester is distributed as follows:

Mid Semester Examination 1	15% (which is offline)
Mid Semester Examination 2	15% (which is online)
Accessory Assessment	5% (written quiz, Assignment etc.)
Attendance	5% (above 75% attendance will be rewarded)
End semester examination	60% (which is descriptive)

Assessment of all the practical courses: Assessmentis done in two parts, namely by mid semester assessment (20 %) and end semester assessment (30%). End semester practical exams are designed to test student's knowledge as well as skills in the conduct of experiments and generation of reliable results. A written record of experimental work carried out throughout the semester is also assessed.

Assessment of Environmental Science: The evaluation of 100% of the assessment in environmental science is distributed as follows:

Continuous assessment involving field study, written test, presentation of project findings etc. 30%

Participation & Involvement in the course 10% (above 75% attendance will be rewarded)

Assessment of Internship: Direct assessment is done through the 12day internship which the students complete during their sixth semester as it has clear learning outcomes like providing hands on experience on making value added products which improves their skill in Aquaculture field. After completion of the training students will submit internship report which is assessed for 10 marks based on viva voce individually and testing students' knowledge through an objective test conducted.

LEARNING OUTCOMES:

.

CODE	TITLE	OF	THE	COURSE OUTCOMES
	PAPER			
Z1501(3)	ANIM	AL		CO1:Gain knowledge about the fundamental
	DIVERS	ITY- I		principles of systematics in which the
				animals are placed & how to classify
				according to their characters.
				CO2: Know and remember thegeneral
				characters and classification up to orders .
				CO3: Be able to understand the basics of life
				processes in the non-chordates.
				CO4: Understand the pathogenicity, life
				history and significance of invertebrate
				groups.
				CO5: Gain knowledge on the general biology
				of few selected non-chordates.
				CO6: Gain knowledge about some of the
				important and common protozoans,
				helminthes, and arthropods of parasitic nature

		causing diseases.
		CO7: Identify the various invertebrate larval
		forms.
		CO8: Understand the morphology ofEarth
		worm, importance of vermicomposting.
		CO9: Learn about the regeneration capacity
		in Echinoderms with star fish as an example.
		CO10: Understand about coral reef
		formationand its ecological role.
		CO11:Gets sound foundation for better
		learning in Zoology, entrepreneurship skills in
		pearl culture .
Level of attainment of CO	1-CO12 :- 83.7%	
Z1551(2)	Animal Diversity	
	Ι	
	(practical)	
	l	
Z2501(3)	Animal Diversity	CO1: To identify vertebrates to the correct
	II.	taxonomic class and important orders and
(Theory)		families within these classes.
		CO2: Understand the structural and functional

aspects of vertebrate systems.
CO3: Understand the ecological role of different
groups of chordates.
CO4: Understand the diversity of chordates.
CO5: Be able to describe unique characters of
protochordates and vertebrates (fishes, amphibi-
ans, reptiles, birds & mammals).
CO6: Be able to identify major anatomical
structures in vertebrates.
CO7: Gain knowledge in understanding the
structure and function of heart and the increasing
complexity from Pisces to mammals.
CO8: Demonstrate understanding in adaptive
radiation or divergent evolution in vertebrate
groups like reptiles and mammals.
CO9: Demonstrate skill in designing and
constructing models through the theoretical
knowledge.
CO10: Develop critical thinking, raise questions,
and communicate ideas through projects and

Z2551(2)	Animal Diversity	
(Practical)	Ш	CO1: Be able to identify & classify the vertebrates.
		CO2: Develops skill in dissecting fish to observe
		the viscera.
		CO3:Gain knowledge practically by specimen
		observation and illustrate through drawing.

		CO4: Compare & differentiate girdles and bones
		of frog, calotes, pigeon and rabbit.
Z3501(3)	Cytology and	CO1: Acquire knowledge about the elements of
	physiology	cytology.
		CO2: Gaininsight on the basic components of
		Prokaryotic and Eukaryotic cells.
		CO3:Apply their knowledge in cell biology to
		changes in cell function
		CO4: Be able to explain the stages of information
		processing in the nervous system.
		CO5: Be knowledgeable RMP, AP, and synapse
		and describe how the gated ion channels produce
		signals.
		CO6: Know the structure of neuron and be able
		to describe how electric signals are generated and
		propagated.
		CO7: Acquire knowledge on the countercurrent
		mechanism and urine formation.
		CO8: Gain insight into the functioning of
		endocrine glands.
		CO9: Understand the anatomical components of
		circulatory system.
		CO10: Acquire understanding on the working of
		the respiratory system.
Z3551(2)	Cytology &	CO1: Acquire skills for analysis of blood groups,
	Physiology	Rh factor, Estimation of Hb, Blood pressure etc.
	(pr)	CO2: Carry out laboratory experiments in
		physiology using standard procedures.

		CO3: Able to prepare temporary slides of
		mitosis.
		CO4: Work collaboratively to perform
		experiments.
		CO5: Practice safety & ethical measures in labs.
Bench mark set for the pap	er 80%	
	Genetics,	CO1: Demonstrates knowledge of the terms
Z	Ecology	phenotype, genotype, locus, allele, homozygous,
4501(3)	,Evolution &	and heterozygous.
	Zoogeography	CO2: Applies knowledge of Mendel's principle
		of segregation and independent assortment to
		solve genetic problems involving monohybrid,
		dihybrid, and test crosses.
		CO3: Demonstrate critical thinking to solve
		problems related to X-linked inheritance.
		CO4:Apply the knowledge of genetics in a
		variety of problem solving situations.
		CO5: Understand the extensions of mendelian
		genetics, including different forms of allelic
		relationships.
		CO6: Present an overview of diversity of life
		forms in an ecosystem
		CO7: Able to explain the role of organisms in
		energy transfers and relate to food chain or food
		web.
		CO8: Apply and be able to interpret why external
		factors bring changes in populations.
		CO9: Predict the potential consequences of
		human activities including pollution & climatic
		changes on species abundance and distribution.
		CO10:Gain knowledge on fundamental processes

		that cause or prevent adaptive evolution,
		Speciation and extinction .
		CO10: Understand Darwin's thought and explain
		how life might have originated on this planet.
		CO11: Gain knowledge on how gene frequencies
		changes from one generation to next due to
		mutation, migration, genetic drift, non-random
		mating and selection.
		CO12:Understand the process of allopatric
Benchmark is set for		speciation.
75%		CO13:Analyse the importance of maintaining
		biodiversity and its role in conservation of
		species and ecological balance.
	Genetics,	CO1: Be able to estimate the dissolved oxygen of
	Ecology	the given sample.
	,Evolution &	CO2: Able to solve genetic problems on
	Zoogeography	inheritance.
	(practical)	CO3:Able to identify the fauna and adaptations
		of sandy shore, muddy shore & Rocky shore.
		CO4:Relate the fauna according to the
		zoogeographical realms.
		CO5: Infer the effects of global warming to
		animal distribution.
Benchmark is set for 80%		
Z5501(3)	Biotechnology	CO1:Gain knowledge about how recombinant
		genes are formed
		CO2: Able to understand the applicability of

		cloning vectors and restriction enzymes.
		CO3: Acquire knowledge & explain the
		principles that form the basis for recombinant
		DNA technology.
		CO4:Comprehend the fundamental concepts of
		animal cell culture and its importance.
		CO5: Understand the importance of production
		of monoclonal antibodies and hybridoma
		technology.
		CO6: Demonstrates knowledge of reproductive
		technologies in animals.
		CO7: Gain insight into cloning, transgenesis and
		importance of transgenic animals.
		CO8: Gain knowledge about industrial
		applications of Biotechnology like fermentation
		technology.
		CO9: Be knowledgeable about the scope of
		biotechnology in Agriculture, medicine and
		environment.
		CO10: Evaluate & understand the importance of
		ethical concerns over the use of animal
		biotechnology.
Level of Attainment of CO	1 to CO10:85.8%	
Z5551(2)	Biotechnology	CO1: Acquire skills for handling equipment for
	(Practical)	biotechnology Practical's.
		CO2: Learn about the use of autoclave and
		importance of sterilization.
		CO3: Able to conduct practicals using
		standardized procedures.
		CO4: Use problem solving skills and team work
		to use knowledge in making biotechnology

		models and presentations.
Level of attainment of CO	1 to CO3: 85%	
Z 5502(3)	Animal	CO1: Gain knowledge in all aspects of poultry
	Husbandry	maintenance, production, nutrition, health,
		welfare etc.
		CO2: Understand avian anatomy, formulating
		poultry feed, assessing nutrient digestibility,
		quality of eggs etc.
		CO3: Design a poultry unit guided by the
		principles of poultry housing.
		CO4:Design a dairy farm based on the theoretical
		knowledge of housing of dairy animals.
		CO5: Explain the importance of dairy production
		locally and worldwide.
		CO6: Gain insight into the selection of dairy
		cattle to encourage herd improvement.
		CO7: Understand how a dairy farm works and
		management practices for better results.
		CO8: Learn about breeding, artificial
		insemination in cattle etc.
		CO9:Able to evaluate the economic importance
		of the economically important poultry products
		from quail, turkey, Emu etc.
Level of Attainment of CC	01 to CO8 : 87 %	
Code	Animal	CO1: Identify different breeds of poultry breeds.
Z 5552(2)	Husbandry(CO2: Distinguish a layer from a non- layer bird.
	Practical)	CO3: Demonstrate understanding of poultry
		diseases and their prevention.
		CO4:Identify various cattle breeds .
		CO5: Summarise the visit to a dairy farm in the
		form of report writing.

Level of attainment of CO	1 to CO5 : 87.7 %	
Z E16501(3)	Wildlife:	CO1: Gain knowledge on the principles of
	Diversity,	wildlife conservation and management.
	Conservation	CO2: Relate the concepts of national parks,
	&Management	wildlife sanctuaries & biosphere reserves.
		CO3: Be competent in basic forest management,
		principles and evaluation of forests for health,
		wildlife habitat etc.
		CO4: Discuss the causes of deforestation, narrate
		the effects of deforestation.
		CO5: Define the terms conservation and gain
		knowledge on conservation schemes& strategies.
		CO6: Develop an understanding of how animals
		interact with each other and their natural
		environment.
		CO7: Demonstrate critical thinking to link theory
		to solve practical problems in wild life
		conservation.
		CO8: Discuss about Tracking devices &
		methods.
		CO9: Gain knowledge about illegal wild life
		trade &legislation.
		CO10:Acquire knowledge in designing a zoo
		with the required facilities.
		CO11:Acquire knowledge about the important
		national parks and birdsanctuaries of AP.
Level of attainment of co1	-co10:Benchmark is	s set at 80%
ZE1 6551(3)	Wildlife:	CO1: Develop tactile skills involved in effective
	Diversity,	collection & observation of live animals.
	Conservation	CO2: Able to work collaboratively on team based

	&Management	projects.
	(Practical)	CO3: Able to identify horns, pugmarks, etc.
		CO4: Gain knowledge about endangered species.
		CO5: Suggest habitat improvement strategies.
Level of attainment of CO	1- CO4:-Bench mar	k is set at 85%
ZA16501(3)	Principles of	O1: Gain an overview of the fishery &
	Aquaculture	aquaculture industry in the world.
		CO2: Gain knowledge about the techniques &
		principles underlying the culture of various
		organisms.
		CO3: Design a pond, its layout, design,
		construction & preparation using theoretical
		knowledge.
		CO4: Understand the culture practices & systems
		like traditional, intensive etc.
		CO5: Develop an insight into procurement of
		seed, management of Carp culture ponds.
		CO6: Understand the culture of aquatic
		organisms in fresh water and marine water.
		CO7: Apply & explain the rules of construction
		& management of ponds and artificial tanks,
		recirculating systems, raceways etc.
		CO8: Acquire knowledge about culture of
		ornamental fishes & rearing them.
		CO9: Demonstrate critical thinking in providing
		the nutritional requirements according to the age
		of the fish.
		CO10: Develop awareness about the technique of
		Aquaculture and job potential of fisheries.
Level of attainment of CO	1 to CO7: 89.7%	

ZA16551(2)	Principles of	CO1: Identify important edible fishes,					
	Aquaculture(pr)	crustaceans, & aquarium fishes.					
		CO2: Learn about the descriptive,					
		morphometric& meristic characters.					
		CO3: Gain knowledge about the fish and shrimp					
		diseases.					
		CO4: Gain practical insight about rigor mortis.					
Level of attainment of co1	to co4:- 92%	I					
ZA26502(3)	Aquaculture						
	Management	CO1: Gain knowledge about breeding and					
		hatchery management.					
		CO2: Understand the importance of water quality					
		management.					
		CO3: Study about feed management, live foods,					
		and their shrimp larval nutrition.					
		CO4: Gain insight about disease management,					
		health management and prophylaxis.					
		CO5: Be able to apply the knowledge of					
		economics and marketing methods for better					
		demand and price.					
		CO6: Be able to manage fish habitats					
		by their understanding of natural systems.					
		CO7: Design an aeration system for intensive					
		fish farming.					
		CO8: Acquire knowledge about hypophysation					
		technique.					
		CO9: Gain knowledge about the various kinds of					
		fish hatcheries.					
		CO10: understand genetic improvement of fish					
		stocks.					

Level of attainment of co1	- co5: 90.9 %						
ZA26552(2)	Aquaculture	CO1: Observe culture techniques of phyto and					
	Management (pr)	zooplankton.					
		CO2: Able to formulate fish feed from diverse					
		ingredients.					
		CO3: Demonstrate the knowledge of economic					
		impact of fish farms on the value of aquaculture					
		products.					
		CO4:carry out water quality monitoring					
		techniques.					
Level of attainment of CO	1-CO4: 93%						
ZA3 6503(3)	Postharvest	CO1:Gain knowledge about handling and					
	Technology	principles of fish preservation.					
		CO2: Understand the fish preservation methods					
		and able to apply safety and ethical measures of					
		hygiene.					
		CO3: Be able identify hazards.					
		CO4: Gain insight into Hazard analysis and					
		critical control points.					
		CO5: Understand the uses of seaweeds in disease					
		treatment and therapeutic drugs.					
		CO6: Acquire knowledge and be able to					
		practically be vigilant about good manufacturing					
		practices.					
		CO7: Gain knowledge about preparation of value					
		added sea products.					
		CO8:Demonstrate critical thinking in using fish					
		preservation methods through the knowledge					
		gained in theory.					
		CO9:learn fluently the seven principles of					
		НАССР.					

		CO10: Plan and prepare flow chart for fish					
		processing.					
Level of attainment of CO	1 TO CO7: 89.5 %						
ZA36553(2)	Postharvest	CO1:Acquire skills for preparation of fish by -					
	Technology	products.					
		CO2: Gain hands on experience on salting,					
		drying ,slicing etc.					
		CO3:Acquire skills on handling fish and prepare					
		value added products.					
		CO4:Be able to plan and prepare flow charts for					
		procedures in processing of fish.					
		CO5:Follow safety and hygienic procedures in					
		processing plants.					
Level of attainment of CO	I-CO 4 : 93%						

Z1501 (3) Animal Diversity I (Theory) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO5
CO 1	3	1			
CO 2	3	2			
CO 3	3				
CO 4	3				
CO 5	3	2			
CO 6	2	1			
CO 7	3	2			
CO 8	3				
CO 9	2				
CO 10	3				
Average					

Low level of alignment (mapping)	1
Medium level of alignment (mapping)	2
High level of alignment (mapping)	3

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4
CO 1		3		
CO 2		3		
CO 3		2		
CO 4		3		
CO 5		2		
Average				
Low level of alignment (mapping)	1	•	ł	1

Z1551 (2) Animal Diversity I (Practical) - Input Mapping

Medium level of alignment (mapping)

High level of alignment (mapping) 3

Z2501 (3) Animal Diversity II & Developmental Biology (Theory) - Input Mapping

2

Course Outcome	PSO I	PSO2	PSO 3	PSO 4	PSO 5
CO 1	3				
CO 2	3				
CO 3	3		2	2	
CO 4	3	2			
CO 5	3	2			
CO 6	2				
CO 7	3				
CO 8	3				
CO 9	3				3
CO 10					2
Average					

Low level of alignment (mapp	ing)	1		

High level of alignment (mapping)

Z2551 (2) Animal Diversity II & Developmental Biology (Practical) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO5
CO 1		3			
CO 2		3			
CO 3	3	3			3
CO 4		2			
CO 5					
Average					
Low level of alignment	(mapping)	1		1	1

3

Low level of alignment (mapping)

Medium level of al	lignment (mappi	ng) 2
--------------------	-----------------	-------

High level of alignment (mapping)

Z3501 (3) Cytology & Physiology (Theory) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO5
CO 1	3	2			
CO 2	3	2			2
CO 3	3				
CO 4	3				2
CO 5	3				
CO 6	3				2
CO 7	2				
CO 8	3	1			
CO 9	2				2
CO 10	3				1
Average					

Low level of alignment (mapp	oing)	1		

High level of alignment (mapping) 3

Z3551 (2) Cytology & Physiology (Practical) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	2	3			
CO 2		3			
CO 3	1	3			1
CO 4		3			
CO 5		3			
Average					
Low level of alignment (mapping	ng)	1	I	1	1
Medium level of alignment (ma	apping)	2			

High level of alignment (mapping)3

|--|

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2			
CO 2	3	2			
CO 3	3	3			
CO 4	3				
CO 5	3				
CO 6	3		2		
CO 7	3		2		2
CO 8	3		2		
CO 9	3		2		
CO 10	3				

CO11	2		
CO12	2		
CO13	3	3	3
Average			

Low level of alignment (mapping)

1

Medium level of alignment (mapping) 2

High level of alignment (mapping)

Z4551(2) Genetics, Ecology, Evolution & Zoogeography (Practical) - Input Mapping

3

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1		3			
CO 2	3	3			
CO 3	2	3			2
CO 4	2	3			2
CO 5	2	3	3		
Average					
Low level of alignment (mapp	oing)	1			

Medium level of alignment (mapping)	2
High level of alignment (mapping)	3

Z5501 (3) Animal Biotechnology (Theory) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3			2	2
CO 2	3			2	2
CO 3	3				
CO 4	2	1			1
CO 5	2				
CO 6	3	1			

CO 7	2			1
CO 8	3	2		1
CO 9	3			1
CO 10	2			
Average				
Low level of alignment (mapp	oing)	1		

High level of alignment (mapping) 3

Z5551 (2) Animal Biotechnology (Practical) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO5
CO 1		2			
CO 2	1	2			
CO 3		2			
CO 4		2			2
CO 5					
Average					
Low level of alignment (mapp	oing)	1			
Medium level of alignment (n	napping)	2			
High level of alignment (map	ping)	3			

Z5502 (3) Animal Husbandry (Theory) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	2			2
CO 2	3	2			
CO 3	3	2			3
CO 4	3	2			3
CO 5	3	2			

CO 6	3	2		
CO 7	3			2
CO 8	3	1		
CO 9	3	1		
CO 10				
Average				
Low level of alignment (mapp	oing)	1		

High level of alignment (mapping) 3

Z5552 (2) Animal Husbandry (Practical) - Input Mapping

3	3		
2			
4	3		
2	2		
3	3		
			3
_	2 3 1	2 2 3 3	2 2 3 3 1

Medium level of alignment (mapping) 2

High level of alignment (mapping)

Z- E1-6501 (3) Wildlife: Diversity, Conservation and Management (Theory) - Input Mapping

3

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3		2		2
CO 2	2		2		2
CO 3	3	2	2		

CO 4	3		2		1		
CO 5	3		2		2		
CO 6	3		2				
CO 7	3		2				
CO 8	3						
CO 9	3		2		2		
CO 10	3	2					
Average							
Low level of alignment (mapping) 1							

Low level of alignment (mapping)

Medium level of alignment (mapping) 2

High level of alignment (mapping)

Z-E1-6551(2) Wildlife: Diversity, Conservation and Management (Practical) - Input Mapping

3

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1		3			
CO 2		3			2
CO 3		3			
CO 4	2	3			
CO 5		3			
Average					
Low level of alignment (mapping)		1			
Medium level of alignment (mapping)		2			

High level of alignment (mapping) 3

ZA16501 (3) Principles of Aquaculture (Theory) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3				

CO 2	3	2					
CO 3	2	2		1	1		
CO 4	3						
CO 5	3	1					
CO 6	3						
CO 7	3	2			2		
CO 8	3	2		1	2		
CO 9	3	2					
CO 10	3	2					
Average							
Low level of alignment (mapping) 1							

High level of alignment (mapping) 3

ZA16551 (2) Principles of Aquaculture (Practical) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1		3			
CO 2	2	3			
CO 3	2	3		2	1
CO 4	2	3		2	1
CO 5					
Average					
Low level of alignment (mapping)		1	·		·
Medium level of alignment (mapping)		2			

Medium level of alignment (mapping)	2
High level of alignment (mapping)	3

ZA26502 (3) Aquaculture Management (Theory) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
----------------	-------	-------	-------	-------	-------

CO 1	3	2						
CO 2	3	2		1	1			
CO 3	3	2		2				
CO 4	3	1						
CO 5	2	2						
CO 6	2	2						
CO 7	2	2			2			
CO 8	3	2		1	2			
CO 9	3	3		1	2			
CO 10	3							
Average								
Low level of alignment (mapping) 1								

2

3

Medium level of alignment (mapping)

High level of alignment (mapping)

ZA26552 (2) Aquaculture Management (Practical) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1		2		2	
CO 2		3		2	
CO 3	2	2			
CO 4		2			
CO 5					
Average					
Low level of alignment (mapping)		1			
Medium level of alignment (mapping)		2			

High level of alignment (mapping) 3

ZA36503 (3) Postharvest Technology (Theory) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5
CO 1	3	3		3	
CO 2	3	3		3	
CO 3	3	2		3	
CO 4	3	2		1	
CO 5	3	2		2	
CO 6	3	3		2	
CO 7	3	2		3	
CO 8	3	3		1	
CO 9	3	2		1	
CO 10	3	2		2	
Average					
Low level of alignment	(mapping)	1	·	·	

Low level of alignment (mapping)

Medium level of alignment (mapping)

High level of alignment (mapping)

ZA36553 (2) Postharvest Technology (Practical) - Input Mapping

Course Outcome	PSO I	PSO 2	PSO 3	PSO 4	PSO 5		
CO 1	2	3		3			
CO 2	2	3		3			
CO 3	2	3		3			
CO 4	2	3		3			
CO 5	2	3		3			
Average							
Low level of alignment (mapping) 1							

2

3

2

3

Low level of alignment (mapping)

Medium level of alignment (mapping)

High level of alignment (mapping)