ST JOSEPH'S COLLEGE FOR WOMEN (AUTONOMOUS) VISAKHAPATNAM DEPARTMENT OF MATHEMATICS

The Department of Mathematics, St. Joseph's College for Women (A) seeks to serve BSc Programme students interested in careers related to Mathematics. The department offers Mathematics in four core combinations MPC, MPCs, MEC and MStCs of BSc programme. In order to cater to the diverse interests of students and employers, a total of 10 theory and 10 practical courses are offered as part of Mathematics domain in all the four combinations.

Programme Specific Outcomes of BSc Programme with Mathematics

PSO 1: To inculcate the concepts and applications of Differential Equations, Solid Geometry, Abstract Algebra, Real Analysis, Ring Theory and Vector Calculus, Linear Algebra and Numerical Analysis, Integral Transforms, Advanced Numerical Analysis and Special Functions.

PSO 2: Be able to apply theoretical / analytical / statistical knowledge gained in various courses of B.Sc to solve numerical problems based on real life situations during practical's and draw meaningful solutions to day to day problems like traffic management.

PSO 3: Be able to access, explore an area to obtain information and use the literature in Mathematics and also able to work as a member of a team.

PSO 4: Be able to integrate knowledge gained in Mathematics to General education courses like Analytical Skills.

Assessment Methodology

PSO 1: To inculcate the concepts and applications of Differential Equations, Solid Geometry, Abstract Algebra, Real Analysis, Ring Theory and Vector Calculus, Linear Algebra and Numerical Analysis, Integral Transforms, Advanced Numerical Analysis and Special Functions

Direct method of computing PSO 1 attainment is based on the student performance in all assessment instruments namely online and offline - subjective and objective tests for all the courses offered (M1301, M2301, M3301, M4301, M5301, M5302, M6301, ME₁6301, MA₁6301, MA₂6302, MA₃6303, MB₁6301, MB₂6302, MB₃6303). These exams test students' learning at knowledge, understanding and application levels in the respective courses. Indirect method of

computing PSOs is done through students' course exit survey wherein a structured questionnaire is administered to the students and their response is solicited on a 5 point scale. Responses are consolidated and students' satisfaction level with reference to course transaction is computed.

Level of attainment measurement

Level of attainment of course outcomes includes both direct and indirect assessments. Direct assessment is done by testing the knowledge and/or skills of the student in that course by conducting standardised examinations. In indirect assessment we use the student feedback on course which is measured on 5 point scale. The sum of these two assessments is shown as the level of attainment of that course.

Assessment of all the theory courses is done in two parts, namely by formative assessment (40%) which is internal and summative assessment (60%) which is external. The evaluation of 100% of the assessment in each semester is distributed as follows:

Mid Semester Examination 1	15% (which is offline)
Mid Semester Examination 2	15% (which is online)
Accessory Assessment	5% (written quiz, Assignment etc.)
Attendance	5% (above 75% attendance will be rewarded)
End semester examination	60% (which is descriptive)

Level of attainment of PSO1 (all theory courses offered by the department): 81%

PSO 2: Be able to apply theoretical / analytical / statistical knowledge gained in various courses of B.Sc to solve numerical problems based on real life situations during Practical's and draw meaningful solutions to day to day problems like traffic management.

PSO 2 attainment level is ascertained based on internal assessment (mid semester) and summative assessment (end semester) in every semester. This direct assessment involves application of knowledge in solving / analyzing /exploring a real life situation / difficult problems and also testing students' knowledge.

Assessment of all the practical courses: Assessment is done in two parts, namely by continuous assessment (40%) and summative assessment (60%). In internal assessment, will be assessed for 40% by the practical application knowledge. Summative assessment (60%) of

practical courses is through end semester practical exams designed to test student's knowledge as well as skills in the conduct of practicals. This direct assessment involves application of knowledge in solving / analyzing /exploring a real life situation / difficult problems and also testing students' knowledge. Average percentage of level of attainments of all the practical courses in Mathematics is given below. A written record of practical work carried out throughout the semester is also assessed.

Level of attainment PSO2 (all practical courses offered by the department): 86%

PSO 3: Be able to access, explore an area to obtain information and use the literature in Mathematics and also able to work as a member of a team.

Assessment of Project work: This project work provides an opportunity for the student to apply knowledge and skills obtained in Mathematics theory and practical coursework. From a list of relevant application level topics provided by the dept., Students choose one topic for study, based on their own interest. Like minded students form teams of $2 \le x \le 5$ where x is a group (a group consist of minimum 2 and maximum 5) in V semester as a part of accessory examination for 10 marks and plan & execute the task. The study is followed by collective report submission and individual oral presentation. Attainment of this learning outcome is ensured and assessed by the concerned faculty member at every stage through direct as well as indirect guidance and monitoring.

Level of attainment of PSO3 (projects done by the students in V Semester): 86%

PSO 4: Be able to integrate knowledge gained in Mathematics to General education courses.

Assessment of this learning outcome is largely done through the undergraduate general education course namely Analytical Skills. This course provides an opportunity for the students to apply Mathematical knowledge to ability to visualize, gather information, articulate, analyze and solve complex problems. Analyze the data from the information collected, and come up with a solution to a problem. Easily to attempt all types of competitive exams. Direct method of computing PSO 4 attainment is based on the student performance in all assessment instruments namely formative (Online) and summative tests (Online) in courses on Analytical Skills.

Assessment of Analytical Skills: The evaluation of 100% of the assessment in Analytical Skills is distributed as follows:

Continuous assessment: 30% (which is online)

Participation & Involvement in the course: 10% (above 75% attendance will be rewarded)End semester examination: 60% (which is also online)Level of attainment of PSO4 (Analytical skills offered by the college): 80%

Code	Title of the paper	Outcomes
M1301	Differential Equations	Students will able to
(Th.)		CO1: Extract the solution of differential equations of the first order
		and of the first degree by variables separable, Homogeneous and
		Non-Homogeneous methods.
		CO2: Find a solution of differential equations of the first order and
		of a degree higher than the first by using methods of solvable for p,
		x and y.
		CO3: Compute all the solutions of second and higher order linear
		differential equations with constant coefficients, linear equations
		with variable coefficients.
		CO4: Solve simultaneous linear equations with constant coefficients
		and total differential equations.
		CO5: Form partial differential equations.
		CO6: Find the solution of First order partial differential equations
		for some standard types.
		CO7: Use inverse Laplace transform to return familiar functions
		CO8: Apply Laplace transform to solve second order linear
		differential equation and simultaneous linear differential equations.
		CO9: Compute all the solutions of Orthogonal Trajectories
		CO10: Compute all the solutions of Higher Order Linear
		Differential Equations with Constant Coefficients and non Constant
		Coefficients
Level of a	ttainment of CO1 to CO	10: 77%
M1351	Differential Equations	Students be able to apply theoretical / analytical / statistical
(Pr.)		knowledge gained in various courses of B.Sc to solve numerical
		problems based on real life situations during Practicals and draw

Course outcomes of all the courses offered by Mathematics department

		meaningful solutions to day to day problems
		CO1: Extract the solution of differential equations of the first order
		and of the first degree by variables separable, Homogeneous and
		Non-Homogeneous methods.
		CO2: Find a solution of differential equations of the first order and
		of a degree higher than the first by using methods of solvable for p,
		x and y.
		CO3: Compute all the solutions of second and higher order linear
		differential equations with constant coefficients, linear equations
		with variable coefficients.
		CO4: Solve simultaneous linear equations with constant coefficients
		and total differential equations.
		CO5: Form partial differential equations.
		CO6: Find the solution of First order partial differential equations
		for some standard types.
		CO7: Use inverse Laplace transform to return familiar functions
		CO8: Apply Laplace transform to solve second order linear
		differential equation and simultaneous linear differential equations.
		CO9: Compute all the solutions of Orthogonal Trajectories
		CO10: Compute all the solutions of Higher Order Linear
		Differential Equations with Constant Coefficients and
Level of a	ttainment of CO1 to CO	10: 84%
M2301	Solid Geometry	Students will able to
(Tr.)		Co1: Describe the various forms of equation of a plane, straight line,
		Sphere, Cone and Cylinder.
		CO2: Find the angle between planes, Bisector planes, Perpendicular
		distance from a point to a plane, Image of a line on a plane,
		Intersection of two lines
		CO3:Define coplanar lines and illustrate
		CO4: Compute the angle between a line and a plane, length of
		perpendicular from a point to a line
		CO5: Define skew lines
		CO6: Calculate the Shortest distance between two skew lines
		CO7: To inculcate knowledge on solve problems in analytic

		1
		geometry and able to find appropriate solutions for given problems
		CO8: Geometry for the realistic look to the landscape and the
		characters that inhabit the virtual world.
		CO9: Besides helping computer designers build virtual realities,
		geometry's applications in the real world include Architecture,
		Computer-aided manufacturing, medicine, biology, physical
		sciences and much more
		CO10: Design for construction blueprints
Level of at	tainment of CO1 to C	CO10: 84%
M2351	Solid Geometry	Students be able to apply theoretical / analytical / statistical
(Pr.)		knowledge gained in various courses of B.Sc to solve numerical
		problems based on real life situations during Practicals and draw
		meaningful solutions to day to day problems
		Co1: Describe the various forms of equation of a plane, straight line
		Sphere, Cone and Cylinder.
		CO2: Find the angle between planes, Bisector planes, Perpendicular
		distance from a point to a plane, Image of a line on a plane,
		Intersection of two lines
		CO3:Define coplanar lines and illustrate
		CO4: Compute the angle between a line and a plane, length of
		perpendicular from a point to a line
		CO5: Define skew lines
		CO6: Calculate the Shortest distance between two skew lines
		CO7: To inculcate knowledge on solve problems in analytic
		geometry and able to find appropriate solutions for given problems
		CO8: Geometry for the realistic look to the landscape and the
		characters that inhabit the virtual world.
		CO9: Besides helping computer designers build virtual realities,
		geometry's applications in the real world include Architecture,
		Computer-aided manufacturing, medicine, biology, physical
		sciences and much more
		CO10: Design for construction blueprints
Level of att	ainment of CO1 to C	

M3301	Abstract Algebra	Students will able to
(Th.)	(Number theory and	CO1: Illustrate the Division and Euclidean Algorithm
	Group Theory)	CO2: Describe the properties of prime numbers
		CO3: Show that every positive integer can be expressed as product
		of prime power in unique way
		CO4: Write a formula for the number of positive integers less than n
		that are relatively prime to n
		CO5: Define congruences and describe the properties of
		congruences
		CO6: Find the Sum, product of all the divisiors of N.
		CO7: Find the smallest number with N divisors.
		CO8: Solve the system of linear congruences
		CO9: Fermat's and Wilson's theorem
		CO10: Group theory has a huge number of applications in the real
		world
Level of a	ttainment of CO1 to CO	010: 87%
M3351	Abstract Algebra	Students be able to apply theoretical / analytical / statistical
(Pr.)	(Number theory and	knowledge gained in various courses of B.Sc to solve numerical
	Group Theory)	problems based on real life situations during Practicals and draw
		meaningful solutions to day to day problems
		CO1 : Illustrate the Division and Euclidean Algorithm
		CO2: Describe the properties of prime numbers
		CO3: Show that every positive integer can be expressed as product
		of prime power in unique way
		CO4: Write a formula for the number of positive integers less than n
		that are relatively prime to n
		CO5: Define congruences and describe the properties of
		congruences
		CO6: Find the Sum, product of all the divisiors of N.
		CO7: Find the smallest number with N divisors.
		CO8: Solve the system of linear congruences
		CO9: Fermat's and Wilson's theorem
		CO10: Group theory has a huge number of applications in the real

Level of att	Level of attainment of CO1 to CO10: 87%		
M4301	Real Analysis	Students will able to	
(Th.)		CO1: Define different types of sequences.	
		CO2: Discuss the 8ehavior of the geometric sequence.	
		CO3: Prove properties of convergent and divergent sequence.	
		CO4: Verify the given sequence in convergent and divergent by	
		using 8ehavior of Monotonic sequence.	
		CO5: Prove Cauchy's first limit theorem, Cesaro's theorem,	
		Cauchy's Second limit theorem.	
		CO6: Explain subsequences and upper and lower limits of a	
		sequence.	
		CO7: Give examples for convergence, divergence and oscillating	
		series.	
		CO8: Discuss the 8ehavior of the geometric series.	
		CO9: Prove theorems on different test of convergence and	
		divergence of a series of positive terms.	
		CO10: Verify the given series is convergent or divergent by using	
		different test and To inculcate knowledge on real numbers and their	
		properties & proofs.	
Level of a	ttainment of CO1 to CO	010: 77%	
M4351	M4351 Real Analysis Students be able to apply theoretical / analytical / statistical		
(Pr.)		knowledge gained in various courses of B.Sc to solve numerical	
		problems based on real life situations during Practicals and draw	
		meaningful solutions to day to day problems	
		CO1: Define different types of sequences.	
		CO2: Discuss the 8ehavior of the geometric sequence.	
		CO3: Prove properties of convergent and divergent sequence.	
		CO4: Verify the given sequence in convergent and divergent by	
		using 8ehavior of Monotonic sequence.	
		CO5: Prove Cauchy's first limit theorem, Cesaro's theorem,	
		Cauchy's Second limit theorem.	
		CO6: Explain subsequences and upper and lower limits of a	
		sequence.	

		CO7: Give examples for convergence, divergence and oscillating
		series.
		CO8: Discuss the behavior of the geometric series.
		CO9: Prove theorems on different test of convergence and
		divergence of a series of positive terms.
		CO10: Verify the given series is convergent or divergent by using
		different test and To inculcate knowledge on real numbers and their
		properties & proofs.
I aval of ott	tainment of CO1 to CO	
M5301	1	
	Abstract Algebra	Students will able to
(Th.)	(Group Theory and	CO1: Define rings, zero divisors of a ring, integral domain, field
	Ring Theory)	and prove theorems
		CO2: Group theory has a huge number of applications in the real
		world
		CO3: Define Group, Subgroup, Cosets, Homomorphism of groups,
		ect
		CO4: Explain Lagranges Theorem on finite groups
		CO5: To inculcate knowledge on algebraic equations and their
		relations with properties
		CO6: Define Homomorphism, Homorphic Image, Elementary
		Properties of Homomorphism
		CO7: Define Kernel of a Homomorphism and explain Fundamental
		theorem of Homomorhphism on Groups and Rings
		CO8: Define Integral Domains, Division Ring and Fields
		CO9: Define The characteristic of a ring ,The characteristic of an
		Integral Domain
		CO10: Define The characteristic of a Field. Sub Rings, Ideals and
		Boolean Rings, divisors of zero and cancellation laws Rings
Level of a	ttainment of CO1 to CO	010: 78%
M5351	Abstract Algebra	Students be able to apply theoretical / analytical / statistical
(Pr)	(Group Theory and	knowledge gained in various courses of B.Sc to solve numerical
	Ring Theory)	problems based on real life situations during Practicals and draw
		meaningful solutions to day to day problems

r	Γ	
		CO1: Define rings, zero divisors of a ring, integral domain, field
		and prove theorems
		CO2: Group theory has a huge number of applications in the real
		world
		CO3: Define Group, Subgroup, Cosets, Homomorphism of groups,
		ect
		CO4: Explain Lagranges Theorem on finite groups
		CO5: To inculcate knowledge on algebraic equations and their
		relations with properties
		CO6: Define Homomorphism, Homorphic Image, Elementary
		Properties of Homomorphism
		CO7: Define Kernel of a Homomorphism and explain Fundamental
		theorem of Homomorhphism on Groups and Rings
		CO8: Define Integral Domains, Division Ring and Fields
		CO9: Define The characteristic of a ring ,The characteristic of an
		Integral Domain
		CO10: Define The characteristic of a Field. Sub Rings, Ideals and
		Boolean Rings, divisors of zero and cancellation laws Rings
Level of att	ainment of CO1 to CO1	0: 76%
M5302	Numerical Analysis	Students will able to
(Th.)		CO1: Define Basic concepts of operators Δ , E, ∇
		CO2: Define The Calculus Of Finite Differences
		CO3: Find the difference of polynomial and define Interpolation
		with Equal Intervals
		CO4:Solve problems using Newton forward formula and Newton
		backward formula.
		CO5: Find the difference of polynomial and define Interpolation
		with un Equal Intervals
		CO6: Derive Gauss's formula and Stirling formula using Newton
		forward formula and Newton backward formula.
		CO7: Discuss about Numerical Differentiation
		CO8: Find maxima and minima for differencial difference equation
		Derive Trapezoidal rule, Simpson's 1/3 ,3/8 rules
		\mathbf{r}

		CO9: Derive Weddle's rule, The Euler's Maclaurin's Summation
		Formula.
		CO10: Derive Bisection Method, Method of Successive
		Approximation or Iteration Method, Method of False position or
		Regula False Method, Newton-Raphson method.
Level of a	ttainment of CO1 to C	
M5352	Numerical Analysis	Students be able to apply theoretical / analytical / statistical
(Pr.)	Tumerical 7 marysis	knowledge gained in various courses of B.Sc to solve numerical
(11.)		problems based on real life situations during Practicals and draw
		meaningful solutions to day to day problems
		CO1: Define Basic concepts of operators Δ , E, ∇
		CO2: Define The Calculus Of Finite Differences
		CO3: Find the difference of polynomial and define Interpolation
		with Equal Intervals
		CO4: Solve problems using Newton forward formula and Newton
		backward formula.
		CO5: Find the difference of polynomial and define Interpolation
		with un Equal Intervals
		CO6: Derive Gauss's formula and Stirling formula using Newton
		forward formula and Newton backward formula.
		CO7: Discuss about Numerical Differentiation
		CO8: Find maxima and minima for differencial difference equation
		Derive Trapezoidal rule, Simpson's 1/3 ,3/8 rules
		CO9: Derive Weddle's rule, The Euler's Maclaurin's Summation
		Formula.
		CO10: Derive Bisection Method, Method of Successive
		Approximation or Iteration Method, Method of False position or
		Regula False Method, Newton-Raphson method.
Level of at	L tainment of CO1 to CO	
ME1	Linear Algebra	Students will able to
6301		CO1: Define Vector Space, Quotient space Direct sum, linear span
(Th.)		and linear independence, basis and inner product.
-		CO2: Discuss the linear transformations, rank, nullity.
		COL. Discuss the interior function interiors, runk, function,

		CO3: Find the characteristic equation, eigen values and eigen
		vectors of a matrix.
		CO4: Prove Cayley- Hamilton theorem, Schwartz inequality,
		Gramschmidt orthogonalisation process.
		CO5: Solve the system of simultaneous linear equations and be able
		to apply matrices, systems of equations, regression, and eigenvectors
		to real world situations.
		CO6: Know vocabulary, notation, and operations for matrices and
		vectors.
		CO7: Be able to solve linear systems of equations using a variety of
		techniques and to select the best technique for a given system.
		CO8: Be able to define Linear Transformations and find the find the
		Domain, Range, Kernel, rank, and nullity of a linear transformation.
		CO9: Be able to apply vectors, inner products, and linear
		transformations to real world situations.
		CO10: Develop lesson plans that demonstrate their ability to explain
		concepts related to vectors and matrices.
Level of a	ttainment of CO1 to CO	D10: 75%
M E1	Linear Algebra	Students be able to apply theoretical / analytical / statistical
6351		knowledge gained in various courses of B.Sc to solve numerical
(Pr.)		problems based on real life situations during Practicals and draw
		meaningful solutions to day to day problems
		CO1: Define Vector Space, Quotient space Direct sum, linear span
		and linear independence, basis and inner product.
		CO2: Discuss the linear transformations, rank, nullity.
		CO3: Find the characteristic equation, eigen values and eigen
		vectors of a matrix.
		CO4: Prove Cayley- Hamilton theorem, Schwartz inequality,
		Gramschmidt orthogonalisation process.
		CO5: Solve the system of simultaneous linear equations and be able
		to apply matrices, systems of equations, regression, and eigenvectors
		to real world situations.
		CO6: Know vocabulary, notation, and operations for matrices and
		vectors.

CO7: Be able to solve linear systems of techniques and to select the best techniq CO8: Be able to define Linear Transfor Domain, Range, Kernel, rank, and nullit	que for a given system.
CO8: Be able to define Linear Transfor	
Domain, Range, Kernel, rank, and nullit	
	ty of a linear transformation.
CO9: Be able to apply vectors, inner pr	
transformations to real world situations.	
CO10: Develop lesson plans that demon	nstrate their ability to explain
concepts related to vectors and matrices	• •
Level of attainment of CO1 to CO10: 84%	
M- A1- Integral Transforms Students will able to	
6301 CO1: Solve Basic Integral Calculus pro	blems.
(Th.) CO2: Explain properties of definite inte	
CO3: Prove reduction formulae and sol	•
this formulae.	
CO4: Evaluate double and triple integra	als.
CO5: Apply change variable method to	
triple integral.	
CO6: Explain properties of Beta function	ons.
CO7: Derive relation between Beta	a and Gamma functions.
CO8: Evaluate integrals by using B	Beta and Gamma
functions.	
CO9: Find Fourier series expansion	ns for given functions.
CO10: Find Cosine and Sine series	
functions.	
Level of attainment of CO1 to CO10: 82%	
M-A1- Integral Transforms Students be able to apply theoretic	al / analytical / statistical
6351 knowledge gained in various courses	-
(Pr.) problems based on real life situations	
meaningful solutions to day to day pro	blems
CO1: Solve Basic Integral Calculus pro	
CO2: Explain properties of definite inte	egrals.
CO3: Prove reduction formulae and sol	ve some problems by using
this formulae.	

ions.
ions.
าร
าร
าร
. I.J.
/en
ation
es
st by
•
itting a
sum of
ormula,
central
ewton's
es of a
al rule,
s rules,
e Euler
version
1
stems,.

		Iterative methods. Jacobi's method, Gauss-siedal method.				
		CO9: Introduction, Solution by Taylor's Series, Picard's method of successive approximations				
		CO10: Euler's method, Modified Euler's method, Runge – Kutta methods.				
Level of at	Level of attainment of CO1 to CO10: 91%					
M-A2-	Advanced Numerical	Students be able to apply theoretical / analytical / statistical				
6351	Analysis	knowledge gained in various courses of B.Sc to solve numerical				
(Pr.)		problems based on real life situations during Practicals and draw				
		meaningful solutions to day to day problems				
		CO1: Find the solution of the first order and second order equation with constant coefficient				
		CO2: Find the summation of series finite difference techniques				
		CO3: Find the solution of ordinary differential equation of first by				
		Euler, Taylor and Runge-Kutta methods				
		CO4: Derive Least – Squares curve fitting procedures, fitting a straight line, nonlinear curve fitting, Curve fitting by a sum of exponentials.				
		CO5: Derivatives using Newton's forward difference formula, Newton's backward difference formula, Derivatives using central difference formula, Stirling's interpolation formula, Newton's divided difference formula, Maximum and minimum values of a tabulated function.				
		CO6: General Quadrature formula on errors, Trapozoidal rule, Simpson's 1/3 – rule, Simpson's 3/8 – rule, and Weddle's rules, Euler – Maclaurin Formula of summation and quadrature, The Euler transformation.				
		CO7: Solution of linear systems – Direct methods, Matrix inversion method, Gaussian elimination methods, Gauss-Jordan Method				
		CO8: Method of factorization, Solution of Tridiagonal Systems,. Iterative methods. Jacobi's method, Gauss-siedal method.				
		CO9: Introduction, Solution by Taylor's Series, Picard's method of				

		· · ·		
		successive approximations		
		CO10: Euler's method, Modified Euler's method, Runge - Kutta		
		methods.		
Level of attainment of CO1 to CO10: 96%				
M-A3-	Special Functions	Students will able to		
6301		CO1: Derive Euler's Integrals – Beta and Gamma Functions,		
(Th.)		Elementary Properties of Gamma Functions, Transformation of		
		Gamma functions		
		CO2: Derive Another form of Beta functions, Relation between		
		Beta and Gamma functions, Other transformations, Legendre		
		Duplication Formula		
		CO3: Define Legendre's equation, Definitions of $P_n(x)$ and $Q_n(x)$		
		, To show that $P_n(x)$ is the coefficient of h^n in the expansion in		
		ascending powers of $(1-2xh+h^2)^{-1/2}$		
		CO4: Derive Laplace definite integral for $P_n(x)$, Orthogonal		
		properties of Legendre's Polynomials ,Recurrence formulae,		
		Beltrami's results, Christoffer's summation Formula, Rodrigue's		
		Formula		
		CO5: Derive Laguerr's Differential Equation, Lagurre		
		Polynomials, Generating Function, other forms for the Laguerre		
		Polynomials(Rodrigues Formula).		
		CO6: To find first few Laguerre Polynomials, Orthogonal Property		
		of the Laguerre Polynomials. Recurrence formulae for Laguerre		
		Polynomials.		
		CO7: Derive Hermite Differential Equation, Hermite Polynomials,		
		Generating Function, Other forms for the Hermite Polynomials		
		CO8: To find first few Hermite Polynomials, Orthogonal Properties		
		of Hermite Polynomials, Recurrence formulae for Hermite		
		Polynomials		
		CO9: Derive Bessel's equation , General Solution of Bessel's		
		equation		
		CO10: Define of $J_0(X)$, Recurrence Formulae for $J_n(X)$.		
Level of atta	Level of attainment of CO1 to CO10: 83%			

M-A3-	Special Functions	Students be able to apply theoretical / analytical / statistical			
6351		knowledge gained in various courses of B.Sc to solve numerical			
(Pr.)		problems based on real life situations during Practicals and draw			
		meaningful solutions to day to day problems			
		CO1: Derive Euler's Integrals – Beta and Gamma Functions,			
		Elementary Properties of Gamma Functions, Transformation of			
		Gamma functions			
		CO2: Derive Another form of Beta functions, Relation between			
		Beta and Gamma functions, Other transformations, Legendre			
		Duplication Formula			
		CO3: Define Legendre's equation, Definitions of $P_n(x)$ and $Q_n(x)$			
		, To show that $P_n(x)$ is the coefficient of h^n in the expansion in			
		ascending powers of $(1-2xh+h^2)^{-1/2}$			
		CO4: Derive Laplace definite integral for $P_n(x)$, Orthogonal			
		properties of Legendre's Polynomials ,Recurrence formulae,			
		Beltrami's results, Christoffer's summation Formula, Rodrigue's			
		Formula			
		CO5: Derive Laguerr's Differential Equation, Lagurre			
		Polynomials, Generating Function, other forms for the Laguerre			
		Polynomials(Rodrigues Formula).			
		CO6: To find first few Laguerre Polynomials, Orthogonal Property			
		of the Laguerre Polynomials. Recurrence formulae for Laguerre			
		Polynomials.			
		CO7: Derive Hermite Differential Equation, Hermite Polynomials,			
		Generating Function, Other forms for the Hermite Polynomials			
		CO8: To find first few Hermite Polynomials, Orthogonal Properties			
		of Hermite Polynomials, Recurrence formulae for Hermite			
		Polynomials			
		CO9: Derive Bessel's equation , General Solution of Bessel's			
		equation			
		CO10: Define of $J_0(X)$, Recurrence Formulae for $J_n(X)$.			
Level of att	Level of attainment of CO1 to CO10: 77%				