ST JOSEPH'S COLLEGE FOR WOMEN (AUTONOMOUS) VISAKHAPATNAM DEPARTMENT OF CHEMISTRY

The Department of Chemistry, St. Joseph's College for Women (A) seeks to serve BSc Programme students interested in careers related to Chemistry. The department offers chemistry in three core combinations MPC, CBZ and BBC of BSc. programme. In order to cater to the diverse interests of students and employers, a total of 14 theory and 11 practical courses are offered as part of chemistry domain in all the three combinations.

Programme Specific Outcomes of BSc Programme with Chemistry

PSOs : Students after graduating with Chemistry as one of the core subjects will:

PSO 1: Be able to demonstrate basic knowledge in the core areas of chemistry (analytical, general, inorganic, organic and physical, pharmaceutical, green chemistry, polymer chemistry etc).

PSO 2: Be versatile in classical laboratory techniques, use instrumental methods for analysis as well as synthesis and follow standardised procedures and regulations in handling and disposal of chemicals.

PSO 3: Be able to access, scout and use the chemical literature and also able to work as a member of a team.

PSO 4: Be able to integrate knowledge gained in Chemistry to General education courses.

Assessment Methodology

PSO 1: Be able to demonstrate basic knowledge in the core areas of chemistry (analytical, general, inorganic, organic and physical, pharmaceutical, green chemistry, polymer chemistry etc).

Direct method of computing PSO 1 attainment is based on the student performance in all assessment instruments namely online and offline - subjective and objective tests for all the courses offered (CH 1201, CH 2201, CH 3201, CH 4201, CH 5201, CH 5205, CH 6201, CH E1 6201, CH A1 6201, CH A2 6201, CH A3 6201, CH B1 6201, CH B2 6201, CH B3 6201). These exams test students' learning at knowledge, understanding and application levels in the respective courses. Indirect method of computing PSOs is done through students' course exit

survey wherein a structured questionnaire is administered to the students and their response is solicited on a 5 point scale. Responses are consolidated and students' satisfaction level with reference to course transaction is computed. Average percentage of level of attainments of all the courses in chemistry is given below.

Level of attainment of PSO1 (all theory courses offered by the department): 78.5%

PSO 2: Be versatile in classical laboratory techniques, use instrumental methods for analysis as well as synthesis and follow standardised procedures and regulations in handling and disposal of chemicals.

PSO 2 attainment level is ascertained based on continuous assessment (throughout) and summative assessment (at the end of) in every semester. This direct assessment involves testing students' knowledge on standardised procedures, their skill in executing them and their compliance with regulations in handling and disposal of chemicals in the conduct of all the laboratory courses (CH 1251, CH 2251, CH 3251, CH 4251, CH 5251, CH 5255, CH 6251, CH E1 6251, CH A1 6251, CH A2 6251, CH A3 6251). Average percentage of level of attainments of all the practical courses in chemistry is given below.

Level of attainment PSO2 (all practical courses offered by the department): 88.8%

PSO 3: Be able to access, scout and use the chemical literature and also able to work as a member of a team.

Attainment of PSO 3 is ascertained through the practical course CH 6251 by assessing project study as one of the experiments. This project work provides an opportunity for the student to apply knowledge and skills obtained in chemistry theory and practical coursework. From a list of relevant application level topics provided by the dept., Students choose one topic for study, based on their own interest. Like minded students form teams of 4 to 5 members and plan & execute the task. The study is followed by collective report submission and individual oral presentation. Attainment of this learning outcome is ensured and assessed by the concerned faculty member at every stage through direct as well as indirect guidance and monitoring.

Level of attainment of PSO3 (projects done by the students): ----100%

PSO 4: Be able to integrate knowledge gained in Chemistry to current environmental issues.

Assessment of this learning outcome is largely done through the undergraduate general education course namely Environmental Science. This course provides an opportunity for the students to apply chemistry knowledge to understand the cause and identify the solution to environmental problems. Direct method of computing PSO 4 attainment is based on the student performance in all assessment instruments namely formative and summative tests in courses on environment as well as a report on the study on environment issues. Average percentage of level of attainments of this course is given below.

Level of attainment of PSO4 (Environmental science offered by the college): 88.5%

Level of attainment measurement

Level of attainment of course outcomes includes both direct and indirect assessments. Direct assessment is done by testing the knowledge and/or skills of the student in that course by conducting standardised examinations. In indirect assessment we use the student feedback on course which is measured on 5 point scale. The sum of these two assessments is shown as the level of attainment of that course.

Assessment of all the theory courses is done in two parts, namely by formative assessment (40%) which is internal and summative assessment (60%) which is external. The evaluation of 100% of the assessment in each semester is distributed as follows:

Mid Semester Examination 1	15% (which is offline)
Mid Semester Examination 2	15% (which is online)
Accessory Assessment	5% (written quiz, Assignment etc.)
Attendance	5% (above 75% attendance will be rewarded)
End semester examination	60% (which is descriptive)

Assessment of all the practical courses: Assessment is done in two parts, namely by continuous assessment (40%) and summative assessment (60%). In Continuous assessment each practical course will be assessed for 40% by considering the 50% (best scored) of the experiments and the total will be calculated for 40%. Summative assessment (60%) of practical courses is through end semester practical exams designed to test student's

knowledge as well as skills in the conduct of experiments and generation of reliable results. A written record of experimental work carried out throughout the semester is also assessed.

Assessment of Environmental Science: The evaluation of 100% of the assessment in environmental science is distributed as follows:

Continuous assessment involving field study, written test, presentation of project findings etc. 30%

Participation & Involvement in the course 10% (above 75% attendance will be rewarded)

End semester examination 60% (which is descriptive)

Assessment of Project work: Project work is assessed as one of the experiments in the practical course CH 6251by the concerned faculty member through direct and indirect guidance and monitoring (Content in the report, Presentation, Viva).

Code	Title of the paper	After the completion of the course student should be able to
CH 1201	Inorganic and Organic	Students will be able to
(Th.)	Chemistry	CO1: Gain insight into various theories on chemical bonding-
		VSEPR theory and molecular orbital theory.
		CO2: Be able to apply the theoretical knowledge to predict the
		structure of molecules
		CO3: Acquire knowledge on the basis of classification of
		elements and trends in general properties of s&p block elements
		CO4: Understand the physical and chemical properties of selected
		inorganic compounds
		CO5: Acquire knowledge on synthesis & structure of diborane
		and higher boranes and boron – nitrogen compounds.
		CO6: Understand the preparation, properties and applications of
		silanes, silicones, Inter halogen compounds, pseudo halogens,
		Hydrazine , Hydroxyl amine & oxides.
		CO7: Study the nomenclature, preparation and factors affecting
		stability of cyclo alkanes.

Course outcomes of all the courses offered by chemistry department

		COP. Establish hand strength hand order and magnetic nature of
		CO8: Establish bond strength, bond order and magnetic nature of
		homo and hetero atomic molecules.
		CO9: knowledgeable on the basics of organic chemistry like types
		of organic reactions, reagents and intermediates.
		CO10: Study the structure of benzene, understand the concept of
		aromaticity, orientation influence of substituents on the ring.
Level of att	tainment of CO1 to CO1	0:74.4%
CH 1251	Qualitative Inorganic	CO1: Make use of standardised procedures for the analysis of
(Pr.)	Analysis - I	inorganic salts.
		CO2: Acquire necessary skills for qualitative analysis of radicals
		CO3: Carry out qualitative analysis of salts containing one anion
		and one cation.
		CO4: Understand the regulations in handling and disposal of
		chemicals.
Level of att	tainment of CO1 to CO4	:84.84%
CH 2201	General and Organic	CO1: Acquire knowledge on toxic elements in the environment
Th.	Chemistry	& the effects of toxic elements.
		CO2: Gain awareness on air pollution.
		CO3: Acquire knowledge on water pollution, unique physical
		and chemical properties of water and hardness of water.
		CO4: Develop insight in the synthesis and applications of
		Carboxylic acids.
		CO5: Learn basics of organic chemistry.
		CO6: Aquire Knowledge on Synthesis of aceto acetic ester and
		Malonic ester.
		CO7: Describe the applications of Ethylacetoacetic ester.
		CO8: Learn about different types of reactions.
		CO9: Acquire knowledge on synthesis and structure of Carbonyl
		compounds.
		CO10: Describe the applications of Carbonyl compounds.
Level of at	tainment of CO1 to CO1	
CH 2251	Qualitative Inorganic	CO1: Make use of standardised procedures for the analysis of
Pr.	Analysis - II	inorganic mixtures.
		ž

		CO2: Gain the necessary skills to work at semi micro level
		CO3: Carry out qualitative analysis of mixtures containing two
		anions and two cations.
		CO4: Understand the regulations in handling and disposal of
		chemicals.
Level of att	tainment of CO1 to CO4	1: 89.83%
CH 3201	Physical Chemistry	CO1: Acquire the ability to identify and establish the fact that no
Th.		gas is an ideal gas and all gases behave as ideal gases only under
		high temp. and low pressure condition
		CO2: Derive equations for Van der Waal's Constants in terms of
		critical constants and deduced the law of corresponding states in
		terms of reduced equation of state
		CO3: Understand the importance and application of Joule
		Thomson Effect in cooling devices and liquid crystals in
		electronic devices and thermography
		CO4: Identify the importance of acid/base catalyst in
		homogeneous and surface catalysed reactions.
		CO5: Gain insight on the importance and understood the salient
		features of enzyme catalysed reactions in living systems. Derived
		the Michaelis Menten Equation and identified the significance of
		Michaelis Constant
		CO6: Derive Gibb's Phase Rule Equation and understood its
		universality and significance in the study of heterogeneous
		systems at equilibrium
		CO7: Apply phase rule equation to study 1C3P(H ₂ O) and
		$2C3P(Ag-Pb, NaCl- H_2O)$ systems with the help of phase
		diagram
		CO8: Derive equations for 0, I,II and III order reactions
		CO9: Understand the various types of methods to find order of
		reactions and collision theory of reaction rates.
		CO10: Develop insights on classification, stability and protective
		ability of colloids, emulsions and gels.
		CO11: Understand the laws of photochemistry (Grothus Draper

		Law and Stark Einstein law)
		CO12: Develop insight on the concept low and high quantum
		yield and electronic transitions (fluoresce and phosphorescence)
		from Jalblonski diagram.
Level of att	ainment of CO1 to CO1	2: 72.4%
CH 3251	Volumetric analysis -I	CO1: Calibrate the apparatus like volumetric flask, pipette and
Pr.		burette.
		CO2: Carry out qualitative analysis of Oxidising and reducing
		agents
		CO3: Learn the applications of types of titrations for various
		estimations
		CO4: Carry out quantitative analysis by volumetric method
		CO5: Acquired basic knowledge on conductometric titrations
		CO6: Correlate the experimental results with the class room
		learning.
Level of att	ainment of CO1 to CO6	5: 85.31%,
CH 4201	Inorganic Chemistry	CO1: Acquire knowledge on the classification of elements,
Th.		general properties (variable oxidation states, colour, complex
		formation catalytic activity, magnetic properties etc.) of d & f
		block elements.
		CO2: Gain knowledge about separation techniques of lanthanides
		CO3: Understand the basic concept of the co-ordination
		compounds, and identify the types of given ligands.
		CO4: Knowledgeable about assumptions, drawbacks of Werner's
		theory of complexes, and isomerism in complexes.
		CO5: Understand Effective atomic number (EAN) and make use
		of that knowledge to calculate EAN for any given complexes.
		CO6: Develop insight in the modern theories of metal-ligand
		complexes i.e. valence bond theory, CFT, trans effect and its
		applications.
		CO7: Apply CFT to different geometries ie. Square planer,
		tetrahedral, Octahedral.
		CO8: Calculate Spin magnetic moment, crystal field stabilization

		energy related to weak and strong field complexes.
		CO9: Understand symmetry in crystals, Laws of constancy and
		laws of rationality, defects in crystals, biological significance of
		essential elements, labile and inert complexes.
		CO10: Derive Braggs equation.
Level of atta	ainment of CO1 to CO10	: 78.1%
CH 4251	Synthesis of organic	CO1: Make use of standardised procedures for the synthesis of
Pr.	compounds	Organic compounds
		CO2 : Carry out single step synthesis of organic compounds
		CO3: Acquire skills on techniques of crystalization
		CO4: Understand the regulations in handling and disposal of
		chemicals.
		CO5: Acquire basic knowledge on purification of solid, liquid
		components
Level of att	tainment of CO1 to CO5	: 92%
CH 5201	Organic chemistry	CO1: Gain knowledge on synthetic approach and physical and
Th.		chemical properties of nitro alkanes
		CO2: Understand the preparations, name reactions, basic
		properties of amines.
		CO3: Depict the mechanism of named reactions
		CO4: Gain knowledge pertaining to life molecules, different
		types of carbohydrates, classification, structure and Establishment
		of Monosaccharides
		CO5: Apply the knowledge on inter conversion of one
		monosaccharide to another Killyani synthesis.
		CO6: Develop insight and analytical thinking on organic
		spectroscopic techniques.
		CO7: Interpret different functional groups and identify with
		characteristic absorptions and signals.
		CO8: Predict NMR signals with corresponding chemical shifts
		CO9: Develop knowledge required for industrial ethical
		requirement
Level of att	tainment of CO1 to CO9	-

CH 5251	Organic qualitative	CO1: Make use of standardised procedures for the analysis of
Pr.	analysis	organic compound
		CO2: Acquire skills in identifying functional groups
		CO3: Learn the process of dervatization
		CO4 : Carryout distillation for pure sample along with the B.Pt.
		CO5 : Understand the handling of volatile / corrosive/solvents
		CO6: Gain the necessary skills of handling Melting point
		instrument
Level of atta	ainment of CO1 to CO6	: 84%
CH 5202	Physical and inorganic	CO1: Acquire knowledge on different types of vapour pressure –
Th.	chemistry	composition and temperature curves, partially miscible liquids
		and their different types, Nernst distribution law and its
		applications.
		CO2: Understand colligative properties like relative lowering of
		vapour pressure, elevation of boiling point, depression of freezing
		point and osmotic pressure and their relation with molecular
		weights.
		CO3: Gain insight on ideal solutions, Raoult's law, Non-ideal
		solutions, azeotropes and fractional distillation.
		CO4: Understand specific and equivalent conductance.
		CO5: Acquir knowledge of Kohlrausch's law and application of
		it.
		CO6: Able to find the transport number using Hittorf method
		CO7: Distinguish spontaneous and non spontaneous processes
		and electrochemical and electrolytic cells.
		CO8: Develop insight on the importance of salt bridge in
		electrochemical cell and different types of single reversible
		electrodes.
		CO9: Understand the applications of conductivity measurements
		and potentiometric measurements
		CO10: Acquire knowledge on classification, naming, preparation
		and properties of organometallic compounds.
Level of attainment of CO1 to CO10: 71%		

CO2: Learn to calculate surface tension and viscosity of the unknown solvents.CO3: Perform hydrolysis of methyl acetate to calculate rate constants for Ist order reaction.CO4: Acquire necessary Skill in determining the distribution constantCO5: Correlate the experimental results with the class room learning.evel of attainment of CO1 to CO5: 82%H-E1- 201Some special aspects of chemistryCO1: Students understand the implications and apply the law of conservation of energy.	CH 5252	Physical experiments	CO1: Make use of standardised procedures for the detection of
unknown solvents. CO3: Perform hydrolysis of methyl acetate to calculate rate constants for Ist order reaction. CO4: Acquire necessary Skill in determining the distribution constant CO5: Correlate the experimental results with the class room learning. evel of attainment of CO1 to CO5: 82% CO1: Students understand the implications and apply the law of conservation of energy. O1 of chemistry CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S nations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.	Pr.		Physical properties.
CO3: Perform hydrolysis of methyl acetate to calculate rate constants for 1st order reaction.CO4: Acquire necessary Skill in determining the distribution constantCO5: Correlate the experimental results with the class room learning.evel of attainment of CO1 to CO5:201 h.of chemistryco1: Students understand the implications and apply the law of conservation of energy.CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions.CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused.CO4: Establish reaction feasibility based on second law of thermodynamicsCO5: Identify, understand and arrive at equations for W and AS for reversible, irreversible and equilibrium processes.CO6: Depict 3 dimensional surfaces and assign D, L-R, S notations to stereogenic centres.CO7: Develop insights on optical and geometric isomerism.CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions.CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			CO2: Learn to calculate surface tension and viscosity of the
evel of attainment of CO1 to CO5: constantCO1: SCO5: COrrelate the experimental results with the class room learning.evel of attainment of CO1 to CO5: 82%EVELH-E1- 201 h.Some special aspects of chemistryCO1: Students understand the implications and apply the law of conservation of energy. CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and AS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			unknown solvents.
CO4: Acquire necessary Skill in determining the distribution constant CO5: Correlate the experimental results with the class room learning.evel of attainment of CO1 to CO5: 82%H-E1- 201Some special aspects of chemistryCO1: Students understand the implications and apply the law of conservation of energy.h.CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions.CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused.CO4: Establish reaction feasibility based on second law of thermodynamicsCO5: Identify, understand and arrive at equations for W and AS for reversible, irreversible and equilibrium processes.CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres.CO7: Develop insights on optical and geometric isomerism.CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions.CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			CO3: Perform hydrolysis of methyl acetate to calculate rate
constant CO5: Correlate the experimental results with the class room learning. evel of attainment of CO1 to CO5: 82% H-E1- 201 Some special aspects of chemistry CO1: Students understand the implications and apply the law of conservation of energy. CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and Δ S for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			constants for Ist order reaction.
CO5: Correlate the experimental results with the class room learning.evel of attainment of CO1 to CO5: 82%H-E1- 201201of chemistryh.CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions.CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused.CO4: Establish reaction feasibility based on second law of thermodynamicsCO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes.CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres.CO7: Develop insights on optical and geometric isomerism.CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions.CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			CO4: Acquire necessary Skill in determining the distribution
evel of attainment of CO1 to CO5: 82% H-E1- 201 Some special aspects of chemistry CO1: Students understand the implications and apply the law of conservation of energy. h. CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules. The monomers of amino acids of polymeric protein chain.			constant
 evel of attainment of CO1 to CO5: 82% H-E1- 201 of chemistry h. CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and △S for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules. The monomers of amino acids of polymeric protein chain. 			CO5: Correlate the experimental results with the class room
 H-E1- Some special aspects CO1: Students understand the implications and apply the law of conservation of energy. CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules. The monomers of amino acids of polymeric protein chain. 			learning.
201of chemistryconservation of energy.h.CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.	Level of att	ainment of CO1 to CO5	: 82%
 h. CO2: Derive equations for work done under isothermal, adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain. 	CH-E1-	Some special aspects	CO1: Students understand the implications and apply the law of
 adiabatic, reversible and irreversible conditions. CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain. 	6201	of chemistry	conservation of energy.
 CO3: Understand the isoenthalpic nature of Joule-Thomson Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain. 	Th.		CO2: Derive equations for work done under isothermal,
 Effect and identify the conditions needed for cooling to be caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules. The monomers of amino acids of polymeric protein chain. 			adiabatic, reversible and irreversible conditions.
 caused. CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules. The monomers of amino acids of polymeric protein chain. 			CO3: Understand the isoenthalpic nature of Joule-Thomson
 CO4: Establish reaction feasibility based on second law of thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain. 			Effect and identify the conditions needed for cooling to be
 thermodynamics CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules. The monomers of amino acids of polymeric protein chain. 			caused.
 CO5: Identify, understand and arrive at equations for W and ΔS for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules. The monomers of amino acids of polymeric protein chain. 			CO4: Establish reaction feasibility based on second law of
for reversible, irreversible and equilibrium processes. CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			thermodynamics
 CO6: Depict 3 dimensional molecules on two dimensional surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain. 			CO5: Identify, understand and arrive at equations for W and ΔS
surfaces and assign D, L-R, S notations to stereogenic centres. CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			for reversible, irreversible and equilibrium processes.
 CO7: Develop insights on optical and geometric isomerism. CO8: Gained basic knowledge on Asymmetric synthesis involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain. 			CO6: Depict 3 dimensional molecules on two dimensional
CO8: Gained basic knowledge on Asymmetric synthesisinvolving stereospecific and stereoselective reactions.CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			surfaces and assign D, L-R, S notations to stereogenic centres.
involving stereospecific and stereoselective reactions. CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			CO7: Develop insights on optical and geometric isomerism.
CO9: Acquire knowledge on nitrogeneous biomolecules.The monomers of amino acids of polymeric protein chain.			CO8: Gained basic knowledge on Asymmetric synthesis
monomers of amino acids of polymeric protein chain.			involving stereospecific and stereoselective reactions.
			CO9: Acquire knowledge on nitrogeneous biomolecules. The
CO10: Gain detailed knowledge on classification, preparation			monomers of amino acids of polymeric protein chain.
			CO10: Gain detailed knowledge on classification, preparation
and properties of amino acid and protein structure. The link			and properties of amino acid and protein structure. The link
between the peptide bond and its characterization.			between the peptide bond and its characterization.
evel of attainment of CO1 to CO10: 83.5%			

CH E1	Gravimetric analysis	CO1: Make use of standardise procedures for the Gravimetric	
6251		analysis	
		CO2: learn the skills of Precipitation process, digestion,	
		filtration, incineration etc.	
		CO3: Aquire practical Knowledge of co-precipitation	
		CO4: Handle sintered glass funnel	
		CO5: Carryout periodical heating followed by weighing	
Level of att	ainment of CO1 to CO5	: 88%	
CH-E2-	Analytical methods in	CO1: Understand the various steps and mechanisms involved in	
6201	chemistry	the conduct of reactions, titrations	
Th.		CO2: Gain insight into the separation techniques in chemical	
		analysis	
		CO3: Acquire detailed knowledge of Chromatography.	
		CO4: Acquire the knowledge of Theories of acid-base, redox,	
		complexometric, iodometric and precipitation titrations.	
		CO5: Identify the choice of indicators for the titrations and	
		Principles of gravimetric analysis	
		CO6: Classify chromatography methods, principles of	
		differential migration adsorption phenomenon.	
		CO7: Depict the Nature of adsorbents, solvent systems, $R_{\rm f}$	
		values, factors effecting R _f values	
Bench Mar	k set for the paper: 80%		
CH-E2-	Instrumental analysis	CO1: Make use of standardise procedures for Instrumental	
6251	& chromatography	analysis	
Pr.	techniques	CO2: Handle Potentiometer, pH meter, Colorimeter and	
		polarimeter for the quantitative chemical analysis	
		CO3: Acquire skills of preparing standard solutions, and	
		conducting titrations	
		CO4: Learn the chromatography techniques like Column, TLC	
		and Paper	
		CO5: Check the purity of compounds by TLC.	
		CO6: Interpret IR spectral data to study the structure of molecules	
Bench Mark	set for the paper: 85%		

СН	A1	Pharmaceutical and	CO1: Acquire knowlege on the terminology, nomneclature
6201		medicinal chemistry	adopted in the pharmceuticals
			CO2: Identify and understand in classifing various drug models
			based on their therpeutic action
			CO3: Describe various sythesis for drugs which are used in daily
			life.
			CO4: Develop insight of different drugs used in daily life.
			CO5: Gain detailed knowledge about different drugs and their
			activities on a particular diseases
			CO6: Identify the reasons for HIV and the preventive measures
			for it.
Level	of att	ainment of CO1 to CO6	: 84.5
СН	A1	Volumetric analysis -II	CO1: Make use of standardise procedures for Instrumental
6251			analysis
			CO2: Handle Conductometer
			CO3: Acquire skills of preparing standard solutions,
			conductometric titrations
			CO4: Carry out quantitative analysis by Conductometric method
			CO5: Correlate the experimental results with the class room
			learning.
Level	of att	ainment of CO1 to CO5	: 91%
СН	A2	Green chemistry	CO1: Gain insight into basic chemistry principles
6201			CO2: Apply the knowledge to atom economic reactions
			CO3: Understand the ionic aqueous face reactions
			CO4: Acquire knowledge on the green solvents and Solvent
			free reactions
			CO5: Understand and identify alternative conventional fuel
			saving named reactions
			CO6 : Acquire knowledge on liquid CO ₂ and its applications'
			CO6: Gain knowledge Microwave assisted synthesis
			CO7:Critical appreciation and usage of Ultra sound energy
			Sonicator based reactions
			CO8: Gain insight of Synthesis of solvent free reactions

			CO9: Describe the applications of Green catalyst PTC, Crown
			Ethers
			CO10: More environmentally conscious while working in
			industry
Level	of att	ainment of CO1 to CO1	0: 87.7%
СН	A2	Reactions with green	CO1: Apply the theoretical knowledge of Green chemical
6251		procedures	procedures in synthesis
			CO2: Identify and discriminate, the safe and toxic solvents
			CO3: Aquire skills of working at solvent free reactions
			CO4: Gain the necessary skills to perform alternative fuel saving
			reactions
			CO5: Understand ethical responsibility to sustain the
			environment
			CO6: Carryout collective project study and acquired the ability of
			presentation skills
Level	of att	ainment of CO1 to CO6	: 93.43%
СН	A3	Polymer chemistry	CO1: Understand the basic concepts of polymerization.
6201			CO2: Identify different types of polymers in our daily life and
			able to distinguish.
			CO3: Develop insights about the different methods of polymerization.
			CO4: Identify and Understand various techniques of
			polymerization.
			CO5: Gain knowledge about the preparation, properties and
			applications of PE, PVC, Polystyrene, polyacrilonytrile,
			CO6: Gain detailed knowledge on the concept Glass transition
			temperature
			CO7: Acquire the knowledge of what are biodegradable polymers
			to have social awareness and to promote awareness in society.
			CO8: Determine the molecular weights of polymers using
			osmometry, viscometry and light scattering methods.
			CO9: Apply kinetics to free radical polymerization
			CO10: Understand the functions and uses of various types of

			polymer additives
Level	of att	ainment of CO1 to CO7	: 89.4%
СН	A3	Water analysis	CO1: Acquire the ability to standardise the pH meter and
6251			determine the pH of different water samples at room temperature.
Pr.			CO2: Estimate the amount of total dissolved solids by measuring
			the conductivity.
			CO3: Gain the necessary skill set to establish the temporary,
			permanent and total hardness in the given sample through
			complexometric titration with standardised EDTA.
			CO4: Perform standardised acid- water (base) titrations with two
			different indicators at two different pH conditions and used the
			data to determine total alkalinity.
			CO5: Learn to calculate the bicarbonate and carbonate amounts
			in the given sample through acid water titrations.
Level o	of atta	inment of CO1 to CO5: 97.6	52%
СН	B1	Fuel chemistry and	CO1: Understand Classification of fuels and their calorific value
6201		batteries	CO2: Develop insight into Fractionation of coal tar – uses of coal
Th.			tar based chemicals
			CO3: Depict the Composition of crude petroleum , refining and
			different types of petroleum products and their applications
			CO4: Acquire the knowledge about Petro chemicals : vinyl
			acetate , propylene oxide , isoprene , butadiene , toluene and its
			derivative xylene
			CO5: Understand the Classification of lubricants, Properties of
			lubricants and their determination
			CO6: Identify Primary and secondary batteries, Characteristics of
			Batteries and working
			CO7: Gain detailed knowledge about Fuel cells, Solar cell and
			polymer cell
Bench	Mark	x set for the paper: 75%	
СН	B2	Inorganic Materials of	CO1: Acquire knowledge on the basis of classification of
6201		Industrial Importance	elements, trends and general properties of s & p block elements
Th.			CO2: Understand the physical and chemical properties of

		selected inorganic compounds
		CO3: Identify the Glassy state and its properties, understand
		classification Manufacture and processing, Composition and
		properties of glass.
		CO4: Gain insight into the Types and manufacture of Ceramics.
		High technology ceramics and their applications
		CO5: Gain detailed knowledge about the Manufacture of cement
		and the setting process, quick setting cements.
		CO6: Classify different types of fertilizers, Manufacture and
		compound and mixed fertilizers
		CO7: Acquire the knowledge about Surface Coatings, Fillers,
		Thinners, Enamels, emulsifying agents and Special paints
		CO8: Classify alloys, ferrous and non-ferrous alloys, Specific
		properties of elements in alloys and Manufacture
		CO9: Establish the origin of explosive properties in organic
		compounds, preparation and explosive properties
Bench Mar	k set for the paper: 80%	
CH B3	Analysis of applied	CO1: Understand the Analysis of soaps and paints
6201	industrial products	CO2: Acquire the knowledge of Analysis of oils, saponification
Th.	1	value, iodine value, acid value, ester value, bromine value, acetyl
		value
		CO3: Identify the Analysis of industrial solvents like
		benzene, acetone, methanol and acetic acid.,
		CO4: Determine the methoxyl and N-methyl groups
		CO5: Analyse the fertilizers like urea, NPK fertilizer, super
		phosphate,
		CO6: Gain insight into the Analysis of DDT, BHC, endrin,
		endosulfone, malathion, parathion.
		CO7: Understand the Analysis of starch, sugars, cellulose and
		paper.
		CO8: Learn the Analysis of fuel gases like: water gas, producer
		gas, kerosene gas.
		CO9: Acquire the knowledge about Analysis of cement- loss on

	ignition, insoluble residu, total silica, sesqui oxides, lime,
	magnesia, ferric oxide, sulphuric anhydrid.
	CO10: Analyse and Determined silica, sulphuur, barium, arsinic,
	antimony, total R_2O_3 , calcium, magnesium, total alkalies,
	aluminium, chloride, floride in glass
Bench Mark set for the paper: 75%	<u> </u>

Code	COs	PSO 1	PSO 2	PSO 3	PSO 4
CH 1201	CO1	3			
	CO2	3			
	CO3	3			
	CO4	3			
	CO5	3			
	CO6	3			
	CO7	3			
	CO8	3			
	CO9	3	2		
	CO10	3	2		
CH 1251	CO1		3		
	CO2		3		
	CO3		3		
	CO4		3	2	
CH 2201	CO1	3			3
	CO2	3			3
	CO3	3			3
	CO4	3	2		
	CO5	3	2		
	CO6	3			
	CO7	3			

Input mapping of COs correlation with PSOs

	CO8	3	2		
	CO9	3	2		
	CO10	3			
CH 2251	CO1		3		
	CO2		3		
	CO3		3		
	CO4		3	2	
CH 3201	CO1	3			
	CO2	3			
	CO3	3			3
	CO4	3	3		
	CO5	3			1
	CO6	3	2		
	CO7	3	2	1	
	CO8	3	2		
	CO9	3	1		
	CO10	3			
	C011	3			
	CO12	3			
CH 3251	C01		3		
	CO2	2	3	2	
	CO3	3	3	2	1
	CO4		3	2	
	CO5		3	2	
	CO6	1	3		
CH 4201	CO1	3			
	CO2	3			
	CO3	3	1		

	CO4	3			
	CO5	3			
	CO6	3			
	CO7	3			
	CO8	3			
	CO9	3			
	CO10	3			
CH 4251	CO1		3		
	CO2		3		
	CO3		3	1	
	CO4		3	1	
	CO5		3	1	
CH 5201	CO1	3			
	CO2	3			
	CO3	3	2		
	CO4	3			
	CO5	3			
	CO6	3	2		
	CO7	3	2		
	CO8	3	1		
	CO9	3			3
CH 5251	CO1		3		
	CO2		3	1	
	CO3		3	1	
	CO4		3		
	CO5		3	1	
	CO6		3	1	
CH 5202	CO1	3			

	CO2	3			
	CO3	3			
	CO4	3	1		
	CO5	3			
	CO6	3			
	CO7	3			
	CO8	3			
	CO9	3	2		
	CO10	3	1		
CH 5252	CO1	2	3		
	CO2	2	3		
		3	3		
	CO3				
	CO4	2	3		
	CO5	1	3		
CH-E1-6201	CO1	3	3	2	
CII-L1-0201	CO1 CO2	3	2	2	
	CO2 CO3	3	2	2	2
					2
	CO4	3	2	2	
	CO5	3	2	2	1
	CO6	3	1	2	1
	CO7	3	1	1	
	CO8	3			
	CO9	3			
	CO10	3			
CH E1 6251	CO1		3	1	
	CO2		3	1	
	CO3		3		
	CO4		3		
	CO5		3		

	001	2		1	
CH-E2-6201	CO1	3		1	
	CO2	3		1	
	CO3	3	1		
	CO4	3	1		
	CO5	3	2		
	CO6	3	1		
	CO7	3	2		
CH E1 (251	CO1		3		
CH-E1-6251	C01				
	CO2		3		
	CO3		3		
	CO4		3		
	CO5		3		
	CO6		3		
CH A1 6201	CO1	3			
	CO2	3			
	CO3	3	2		
	CO4	3		1	
	CO5	3		1	
	CO6	3		1	
CH A1 6251	CO1	2	3	2	
	CO2	1	3	2	
	CO3	1	3	2	
	CO4	2	3	3	
	CO5	1	3	1	
CH A2 6201	CO1	3	3		
011112 0201	CO1	3	3		
	CO2	3	3	1	
	03	3	3	1	

	CO4	3	3	1	
	CO5	3			
	CO6	3	1		
	CO7	3			
	CO8	3	1		
	CO9	3			
	CO10	3		3	
CH A2 6251	CO1		3		1
	CO2		3		2
	CO3		3		2
	CO4		3		2
	CO5		3		2
	CO6		3	3	
CH A3 6201	CO1	3			
	CO2	3			
	CO3	3			
	CO4	3			
	CO5	3			
	CO6	3			
	CO7	3			1
	CO8	3			
	CO9	3			
	CO10	3			
CH A3 6251	CO1	2	3	3	3
	CO2	3	3	3	2
	CO3	3	3	3	3
	CO4	3	3	3	3
	CO5	3	3	3	3
		1	1		1

CH B1 6201	CO1	3			2
	CO2	3			2
	CO3	3			2
	CO4	3			
	CO5	3			
	CO6	3	1		
	CO7	3			2
CH B2 6201	CO1	3	2		
	CO2	3	2		
	CO3	3			
	CO4	3			
	CO5	3			
	CO6	3			2
	CO7	3			
	CO8	3			
	CO9	3	2		
CH B3 6201	CO1	3			
	CO2	3			
	CO3	3	2		
	CO4	3			
	CO5	3			2
	CO6	3			
	CO7	3	2		
	CO8	3			
	CO9	3			
	CO10	3		1	

Strongly correlated: 3

Moderately correlated: 2

Weakly correlated: 1