ST JOSEPH'S COLLEGE FOR WOMEN (AUTONOMOUS)

VISAKHAPATNAM

Department of Biotechnology

The Department of Biotechnology, St. Joseph's College for Women (A) seeks to serve BSc Programme students interested in careers related to Biotechnology. The department offers Biotechnology in only one combination i.e. BBC of BSc programme. In order to cater to the diverse interests of students and employers, a total of 07 theory and 07 practical courses are offered as part of Biotechnology domain in the combination.

Programme Specific Outcomes of BSc Programme with Biotechnology

PSOs : Students after graduating with Biotechnology as one of the core subjects will:

PSO 1: Proficient to exhibit basic knowledge in the core areas of biotechnology (cell biology and genetics, techniques in biotechnology, molecular biology, microbiology, genetic engineering, plant and animal biotechnology, industrial, medical agricultural and environmental biotechnology).

PSO 2: Be versatile in classical laboratory techniques, use instrumental methods for analysis as well as synthesis and follow standardized procedures and regulations in handling and disposal of biological samples.

PSO 3: Be able to access, explore and use the standard biology manuals and also able to be a constituent of the team.

PSO 4: Proficient in knowledge generation and gained logical approach in Biotech filed of General education courses.

Assessment Methodology

PSO 1: Proficient to exhibit basic knowledge in the core areas of biotechnology (cell biology and genetics, techniques in biotechnology, molecular biology, microbiology, genetic engineering, plant and animal biotechnology, industrial, medical agricultural and environmental biotechnology).

Direct method of computing PSO 1 attainment is based on the student performance in all assessment instruments namely online and offline - subjective and objective tests for all the courses offered (BTH 1701, BTH 2701, BTH 3701, BTH 4701, BTH 5701, BTH 5702, BTH 6701). These exams assess student's learning at knowledge, understanding and application

levels in the respective courses. Indirect method of computing PSOs is done through student's course exit survey wherein a structured questionnaire is administered to the students and their response is solicited on a 5 point scale. Responses are consolidated and students' satisfaction level with reference to course transaction is computed.

Level of attainment measurement

Level of attainment of course outcomes includes both direct and indirect assessments. Direct assessment is done by testing the knowledge and/or skills of the student in that course by conducting standardised examinations. In indirect assessment we use the student feedback on course which is measured on 5 point scale. The sum of these two assessments is shown as the level of attainment of that course.

Assessment of all the theory courses is done in two parts, namely by formative assessment (40%) which is internal and summative assessment (60%) which is external. The evaluation of 100% of the assessment in each semester is distributed as follows:

Mid Semester Examination 115% (which is offline) Mid Semester Examination 2 15%(which is online)

Accessory Assessment5% (written quiz, Assignment etc.) Attendance5%(above 75% attendance will be rewarded) End semester examination60%(which is descriptive)

Level of attainment of PSO1 (all theory courses offered by the department): 85.43%

PSO 2: Be versatile in classical laboratory techniques, use instrumental methods for analysis as well as synthesis and follow standardised procedures and regulations in handling and disposal of biological samples.

PSO 2 attainment level is ascertained based on summative assessment (at the end of) in every semester. This direct assessment involves testing student's knowledge on standardised procedures, their skill in executing them and their compliance with regulations in handling and disposal of biological samples in the conduct of all the laboratory courses (BTH 1751, BTH 2751, BTH 3751, BTH 4751, BTH 5751, BTH 5752, BTH 6751).

Assessment of all the practical courses: Assessment is done in two parts, namely by mid semester examination (40%) and end semester examination (60%). In mid semester examination, about 50% of practicals are being conducted to assess the student knowledge. Where as in end semester examination, the total portion of the practical will be conducted. Assessment of examinations will be based on the result oriented unknown sample analysis.

Further, written record of experimental work carried out throughout the semester is also assessed.

Level of attainment PSO2 (all practical courses offered by the department): 89.65%

PSO 3: Be able to access, explore and use the standard biology manuals and also able to be a constituent of the team.

Attainment of PSO 3 is ascertained through the practical course BTH 5751 by assessing summer project study as different areas of biotechnology. This summer project work provides an opportunity for the student to gain hands on experience in sophisticated instrumentation related to biotechnology theory and practical coursework. Students choose one topic for study, based on their own interest. Like minded students form teams of 4 to 5 members and plan & execute the task. The study is followed by collective report submission and individual seminar. Attainment of this learning outcome is ensured and assessed by the concerned faculty member at every stage through direct as well as indirect guidance and monitoring.

Assessment of Project work: Summer project work is being carried out as the students are sent to various industries/hospitals and R & D labs of nearby, as their choice as in BTH 5701 BTH 5702. The faculty members assess through direct and indirect guidance and monitoring (Content in the report and seminars).

Level of attainment in all the projects done by the students: 95.0%

PSO 4: Proficient in knowledge generation and gained logical approach in Biotech filed of General education courses.

Assessment of this learning outcome is largely done through the undergraduate general education course namely Environmental Science. These courses provide various approaches for the students to apply biological knowledge to understand the cause and identify the solution to environmental problems. Direct method of computing PSO 4 attainment is based on the student performance in all assessment instruments namely summative tests in course on environment as well as a report on the study on environmental issues. Average percentage of level of attainments of this course is given below.

Assessment of Environmental Science: The evaluation of 100% of the assessment in environmental science is distributed as follows:

Continuous assessment involving field study, written test, presentation of project findings etc. 30% Participation & Involvement in the course 10% (above 75% attendance will be rewarded)

End semester examination

60% (which is descriptive)

Level of attainment in Environmental science done by the students: 88.5%

Course outcomes of all the courses offered by biotechnology department

Code	Title o	f the pape	er	Outcomes
BTH 1701	Cell	biology	and	CO1: Acquire the basic through knowledge in innovative
(3) (Th.)	Geneti	cs		approaches in Biotechnology.
				CO2: Able to learn the principles and applications of
				microscopy, and their importance in enumeration of
				microbial life processes.
				CO3: Obtain knowledge on the basic structure and all the
				way through morphological appendages of a microbial cell
				CO4: Understand the structural rigidity of gram +ve & gram
				-ve, as well as endospores.
				CO5: Comprehensive insight about cell organelles and able
				to differentiate prokaryote and eukaryote.
				CO6: Be aware of the concepts of cell cycle viz., stage of
				both mitosis & meiosis.
				CO7: Improve the classical genetics and modern genetics
				thorough Mendal principles.
				CO8: Able to signify the deviated mendal ratios can
				influence the number of genes at single locus.
				CO9: Be well-informed on recombination and sex
				determination; long chromosomes and jumping genes.
				CO10: Well attentive of statistical population, sampling
				methods, data representation, measures of variability,
				standard deviation, standard error, range, mean, mode and
				median, ANOVA, Chi square test etc.
Level of att	ainmer	nt of CO1 t	o CC	010: 85.1%
BTH 1751	Cell	biology	&	CO1: Be trained in Microscope usage and function.
(2) (Pr.)	Geneti	cs		CO2: Accomplish expertise in slide preparation and capable
				to study the karyotype.
				CO3: Analyse hereditary data and apply fundamental
				coupling analyses and genetic calculations; Apply critical
				thinking and logical analysis in the assessment and

		evaluation of issues in cell biology and genetics.
		CO4: Be able to integrate the statistical skill to any kind of
		population studies.
Level of a	ttainment of CO1 to	CO4: 86.55%
BTH	Techniques in	CO1: Able to gain concept in electromagnetic radiation,
2701 (3)	Biotechnology	absorption
		spectrum Beer's law and Lamberts's law.
		CO2: Proficient to apply knowledge in identification of
		biomolecules.
		CO3: Attain knowledge on characteristic separation and
		purification of variety of compounds.
		CO4: Exert the knowledge to estimate the compounds
		quantitatively and qualitatively.
		CO5: Able to illustrate the theoretical knowledge in
		chemistry of gels.
		CO6: Knowledge in charge/mass ratio for the separation of
		various compounds.
		CO7: Acquire the basic concepts in radio labelled
		compounds and their application.
		CO8: Able to suggest the innovative methods for
		identification of clinical samples.
		CO9: Well-informed to characterize the molecules and
		compounds based on their weight.
		CO10: Through knowledge in concentrated molecule
		separation and preservation.
Level of a	ttainment of CO1 to	CO10: 83.51%
ВТН	Techniques in	CO1: Able to attain knowledge in quantitative estimation of
2751 (2	2)Biotechnology	biomolecules.
(Pr.)		CO2: Catch up the expertise in separation of molecule size
		and shape.
		CO3: Pick up the concept in dialysis.
		CO4: Can get the proficiency in separation of molecules by

		their charge / mass ratio.
Level of att	ainment of CO1 to C	O4: 90.41%
BTH 3702	Molecular Biology	CO1: Get hold of through knowledge about gene and
(3) (Th.)		genome organization in variety of cell organelles/species.
		CO2: Able to recognize and understand various proteins that
		associate the genomes.
		CO3: Look up through various models of replication in both
		prokaryote and eukaryote organisms.
		CO4: Achieve knowledge on the basic concepts of
		mutations and diverse modes of repair systems.
		CO5: Comprehensive acquaintance about transcription
		process in both prokaryote and eukaryote systems. Be hold
		of promoters, exons and introns. CO6: Be attentive of the
		concepts in post transcriptional modifications and distinguish
		the reverse transcription with normal transcription.
		CO7: Attain facts in relation to genetic code and revise the
		structural differences among RNA's.
		CO8: Competent to contrast the translation process between
		prokaryote and eukaryote organisms.
		CO9: Be well-informed variety of operon concepts in
		prokaryotes, know how gene regulations happen.
		CO10: Conscious knowledge in a range of regulation of
		gene expression of
		eukaryotic organisms.
Level of att	ainment of CO1 to C	O10: 83.34%
BTH 3751	Molecular Biology	CO1: Be skilled in isolation of genetic material from various
(2) (Pr.)		sources.
		CO2: Bring about expertise in evaluation of phosphorus
		content in genetic materials
		CO3: Able to design a valid protocol for the isolation of
		chromosomal and plasmid DNA in bacteria.
		CO4: Capable to assess the quantitative fraction of genetic

		material by exclusive reagents.
Level of att	ainment of CO1 to CO	04: 83.31%
BTH	Microbiology	CO1: Achieve comprehensive list of microbial diversity. Be
4701 (3)		hold in
		interchangeable modes of bacterial classification.
		CO2: Versatile knowledge in Bergey's manual of
		classification.
		CO3: Handle the septic and un hygiene conditions with a
		variety of sterilization techniques.
		CO4: Can be hold of different kinds of organic and
		inorganic substances as potential agents in relation to
		asepsis.
		CO5: Strong intuition will be developed in
		culturing various microorganisms.
		CO6: Be hold in identification of bacteria by various
		staining methods. CO7: Able to enumerate the growth
		phases and development, learn the importance of batch and
		continuous culture systems.
		CO8: Understand the significance of pure cultures in
		relation to produce economized products.
		CO9: Realized to know the importance of viral classification
		and structure in relation to pathogenicity.
		CO10: Through knowledge in replication of viruses and
		regeneration capacity of viral particles in an array of hosts.
Level of att	ainment of CO1 to CO	D10: 88.52%
BTH	Microbiology	CO1: Able to attain knowledge in inspection of various
4751 (2)		microbial forms.
(Pr.)		CO2: Catch up the expertise in equipments related to
		sterilization.
		CO3: Know the importance of media in enumerating
		microbial forms. Can get the proficiency in identification of

		various microbial forms by culture methods and staining
		methods.
		CO4: Hands on expertise in qualitative testing of water and
		milk
Level of att	ainment of CO1 to CO	D4: 89.6%
BTH 5701	Genetic Engineering	CO1: Able to grasp the idea about the significance of
(3) (Th.)		recombinant molecules and their application in relation to
		live stock improvement.
		CO2: Become skilled on function of restriction
		ednonucleases.
		CO3: Attain comprehensive knowledge on vectors systems
		and could have a concept on construction of genomic & c-
		DNA libraries.
		CO4: Can easily design a vector system that could express
		the gene of interest.
		CO5: Could acquire the importance of restriction enzymes
		relevant to recombinant molecule construction.
		CO6: Be aware of the concepts in varied gene transfer
		techniques as well as mechanisms.
		CO7: Could learn unique models for the identification of
		unknown gene sequence.
		CO8: Be holding the knowledge to generate number of
		copies as it available in low concentration. Able to identify
		the victim and criminal in a crime situation.
		CO9: Be well-informed about the concepts in bioinformatics
		and had a chance to predict the exact interaction between
		ligand and enzyme.
		CO10: Well attentive to predict the sequences of protein and
		gene through a
		variety of software.
Level of att	ainment of CO1 to CO	D10: 86.0%

BTH 5751	Part II – Genetic	CO1: Be trained in gene transfer methods, able to design a
(2) (Pr.)	Engineering	short protocol for isolating the gene from a plasmid.
		CO2: Accomplish expertise in controlled usage of restriction
		enzymes to obtain recombinant molecules.
		CO3: Gain the significance of enzymes involved in ligation.
		CO4: Get hands on training in amplifying the gene of
		interest though PCR
		tool; Could predict the phylogenetic relationships among
		species.
Level of att	ainment of CO1 to CO	D4: 88.91%
BTH 5702	Plant and animal	CO1: Bring about the nurturing capabilities in relation to
(3)	biotechnology	plant tissue at
		laboratory conditions (In vitro). Gain knowledge about the
		significant role of growth regulators.
		CO2: Proficient to maintain the initial callus cultures and
		able rise single cell clones of economically important plant
		species.
		CO3: Able to apply variety of applications for the
		production of virus free plants in agronomy; able to provide
		huge quantity of feed stock due to through knowledge.
		CO4: Make use of the bioreactor in production of cell mass
		and could produce the commercially useful compounds.
		CO5: Proficient to transfer genes in plants through
		Agrobacterium sps., Able to gain knowledge in contrasting
		products over classical varieties in food crops.
		CO6: Knowledge in production of transgenic plants/traits.
		CO7: Acquire the basic concepts in animal tissue culture and
		culture media preparation.
		CO8: Able to understand the factors influencing the animal
		tissue culture and gain the knowledge in preservation of
		significant cell lines.
		CO9: Well-informed to accomplish the concepts in In vitro
		fertilization and embryo transfer technology.
		CO10: Attain basic information in relation to transgenic

		animal production and synthesizing the products in animals
		(Molecular pharming).
Level of att	ainment of CO1 to CO	010: 85.37%
BTH	Part I – Plant and	CO1: Able to acquire the techniques and inoculation
5752(2)	animal biotechnology	methods in plant tissue culture in relation to production of
(Pr.)		commercially important plant products. CO2: Catch up the
		expertise in preparation of MS media.
		CO3: Pick up the knowledge in maintenance of cultures;
		know the
		importance of pollen and anther cultures.
		CO4: Can get the proficiency in production of novel
		qualities in seeds.
Level of att	ainment of CO1 to CO	04: 92.41%

BTH-E1-	Industrial, medical,	CO1: Able to understand the significant role of
6701 (3)	agricultural and	biotechnology in industries.
	environmental	Be familiar with pure cultures of industrially important
	biotechnology	microorganisms. CO2: Be in line with the advent of
		fermentation technology and able to know the concepts in
		batch and continuous bioreactors.
		CO3: Be familiar in production technology in relation to
		brewing industry. CO4: Make use of the bioreactor in
		production of organic acids and enzymes of amylase &
		protease. Able to design a protocol for antibiotic production.
		CO5: Demonstrate intellectual skills in relation to health care
		products. Able to exhibit rational expertise in production
		of α and β - interferons and monoclonal antibodies
		CO6: Understand principles underlying Quality Assurance,
		bio safety issues and bioethics. Gain knowledge about
		intellectual property rights.
		CO7: Gain an understanding of the causes, types and control
		methods for Environmental Pollution. Application of
		different life forms in Environmental Remediation.
		CO8: Able to discuss various aspects of municipal and
		industrial sewage treatment.
		CO9: Critically evaluate the application of plant and
		microbial biotechnologies for sustainable agriculture
		CO10: Able to explain the microbial degradation of
		pesticides and bioremediation. Discuss the role of genetically
		engineered microbes.
Level of a	ttainment of CO1 to C	CO10: 86.15%
BTH-E1-	Industrial, medical,	CO1: Demonstrate the production of industrial alcohols,
6751 (2)	agricultural and	biogas and
(Pr.)	environmental	hydrogen.
	biotechnology	CO2: Exhibit the yield percentage of alcohol by colorimetry.
		CO3: Pick up the knowledge in evaluating water parameters.
		CO4: Illustrate the protocol for the isolation of <i>Rhizobium</i> .
Level of a	ttainment of CO1 to C	CO4: 91.36%