ST JOSEPH'S COLLEGE FOR WOMEN (AUTONOMOUS) VISAKHAPATNAM

DEPARTMENT OF BIOCHEMISTRY

The Department of Biochemistry, St. Joseph's College for Women (A) seeks to serve BSc Programme students interested in careers related to Biochemical reactions in Living Organisms. The department offers Biochemistry in combinations with Chemistry and Biotechnology of BSc. programme. In order to cater to the diverse interests of students and employers, a total of 11 theory and 10 practical courses are offered as part of Biochemistry domain in all the combinations.

Programme Specific Outcomes of BSc Programme with Bio Chemistry

PSOs : Students after graduating with Biochemistry as one of the core subjects will:

PSO 1: Be able to demonstrate basic knowledge in the core areas of Biochemistry (Human Physiology, Bio molecules, and Intermediary Metabolism Immunology etc).

PSO 2: Provide hands on experience in Qualitative and Quantitative analysis of Biomolecules and different types of assay methods

PSO 3: Enhance the ability among the students to do project and write the research papers

PSO 4: Be able to apply knowledge gained in biochemistry to environmental issues.

Assessment Methodology

PSO 1: Be able to demonstrate basic knowledge in the core areas of Biochemistry (Human Physiology, Bio molecules, and Intermediary Metabolism Immunology etc).

Direct method of computing PSO 1 attainment is based on the student performance in all assessment instruments namely online and offline - subjective and objective tests for all the courses offered (BCH 1803(3), BCH 1850(2), BCH 2801(3), BCH 3801(3), BCH 4801(3), BCH 5801(3), BCH 5802(3), BCH 6803(3), BCHA1 6801 BCHA2 6801 BCH A3 6801).

These exams test students learning at knowledge, understanding and application levels in the respective courses. Indirect method of computing PSOs is done through students course exit survey wherein a structured questionnaire is administered to the students and their response is solicited on a 5 point scale. Responses are consolidated and students' satisfaction level with reference to course transaction is computed.

Level of attainment measurement

Level of attainment of course outcomes includes both direct and indirect assessments. Direct assessment is done by testing the knowledge and/or skills of the student in that course by conducting standardized examinations. In indirect assessment we use the student feedback on course which is measured on 5 point scale. The sum of these two assessments is shown as the level of attainment of that course.

Assessment of all the theory courses is done in two parts, namely by formative assessment (40%) which is internal and summative assessment (60%) which is external. The evaluation of 100% of the assessment in each semester is distributed as follows:

Mid Semester Examination 1	15% (which is offline) Mid Semester Examination 2
	15% (which is online)
Accessory Assessment	5% (written quiz, Assignment etc.)
Attendance	5% (above 75% attendance will be rewarded) End
semester examination 60 ^o	% (which is descriptive)

Level of attainment in all the theory courses offered by the department: ---- 82%

PSO 2 Provide hands on experience in Qualitative and Quantitative analysis of Biomolecules and different types of assay methods

Attainment of PSO 2 is ascertained through the practical courses (BCH 1851(2), BCH 2851(2), BCH 3851(2), BCH 4851(2), BCH 5851(2), BCH 5852(2), BCH6851(2)BCHA1 6851 BCHA2 6852 BCH A3 6853 .They assessed by conducting formative and summative tests.

Assessment of all the practical courses: Assessments done by conducting Mid practical exam and end semester practical theory exam.40% of the syllabus was given in mid semester exam where as 100% of the syllabus for end semester to test the knowledge of the students.

Level of attainment in all the practical courses offered by the Department: - 92%

PSO 3: Enhance the ability among the students to do project and write the research papers

Attainment of PSO 3 is ascertained through the practical course BCH 5851 or BCH 5852. This project work provides an opportunity for the student to apply knowledge and skills obtained in Biochemistry theory and practical coursework. Topics provided by the company, Students choose one topic for study, based on their own interest. Like minded students form teams of 2 to 5 members. The study is followed by collective report submission and individual oral presentation. Attainment of this learning outcome is ensured and assessed by the concerned faculty member at every stage through direct as well as indirect guidance and monitoring.

Assessment of Project work: Project work is assessed as one of the experiments in the practical course BCH 5851 or BCH5852 by the concerned faculty member through the project report, Presentation.

Level of attainment in all the projects done by the students: 99%

PSO 4: Be able to apply knowledge gained in biochemistry to environmental issues.

Assessment of this learning outcome is largely done through the undergraduate general education course namely Environmental Science. This course provides an opportunity for the students to apply knowledge to find the solutions to environmental problems. Direct method of computing PSO 4 attainment is based on the student performance in all assessment namely formative and summative tests in courses on environment as well as a report on the study on environment issues. Average percentage of level of attainments of this course is given below.

Assessment of Environmental Science: The evaluation of 100% of the assessment in environmental science is distributed as follows:

Continuous assessment involving field study, written test, presentation of project findings etc. 30% Participation & Involvement in the course 10% (above 75% attendance will be rewarded)

End semester examination60% (which is descriptive)Level of attainment of PSO4 (Environmental science offered by the college): 88.5%

Course outcomes of all the courses offered by Department of Biochemistry.

Code	Title of the paper	Outcomes
BCH1801(3)	Human Physiology	CO1: Inculcate knowledge on the normal functions of all the
		organ systems, their regulatory mechanisms and interactions of
		the various systems for well coordinated total body function.
		CO2: Understand the relative contribution of each organ system
		in the maintenance of the
		milieu of interior(homeostasis).
		CO3: Correlate knowledge of physiology of human
		reproductive system to Biochemistry
		CO4: categorizes nervous system and recognizes the cells of
		nervous system
		CO5: explain how the activities of organs are integrated for
		maximum efficiency
		CO6: Tell the properties of circulatory system and respiratory
		system
		CO7:Explain how the muscle contraction involved in movement
		CO8: The student will demonstrate the role of the hormones in
		maintaining body function
		CO9: Explain the properties of digestive system and excretory
		system
		CO10: Explain how RBC participate in transport of gases
Level of attain	ment of CO1 to CO	10: - 72%
BCH1851(2)	Human Physiology	CO1: To develop the skills in techniques of assessing various
	Practical	blood parameters
		CO2: Acquire skills necessary for qualitative analysis of Blood
		groups in blood.
		CO3: Carry out qualitative tests of Saliva.
		CO4: Skilling in recording temperature, pulse rate and Blood
		pressure.
Level of attai	nment of CO1 to CO	D4: 91.7%

BCH2801(3)	Biomolecules-1	CO1: Understand the basic structures, Physico, Chemical
		properties of Biomolecules such as Carbohydrates and Lipids.
		CO2: Able to understand classification of Biomolecules
		Carbohydrates and Lipids
		CO3: Enhance the capability of identify the reactions of
		various functional group of Biomolecules such as
		Carbohydrates and Lipid CO4: Students will apply the theory
		based tools to solve simple Biochemical problems.
		CO5:Recognize lipid structure including lipids found in cell
		membrane and the transport across membranes
		CO6:Identify the structure of several monosaccharides
		disaccharides and polysaccharides
		CO7 :Identify the structure of fat,phospholipids,cholesterol
		CO8:Differentiate between monomers and polymers
		CO9: Identify the structural difference between saturated
		monounsaturated, polyunsaturated fatty acids
		CO10:Compare and contrast the structure and functions of the
		oligosaccharides and polysaccharides
Level of attain	ment of CO1 to CO	10: 74.3%
BCH 2851 (2)	Biomolecules-I	CO1: Able to Interpret Experimental / Investigative data CO2:
	Practical	Distinguish between normal and abnormal data derived as a
		result of tests which has performed and observed in the
		Laboratory
		CO3: Apply theory based tools to solve simple biochemical
		problems related to subject areas
		CO4: Identify the unknown carbohydrate in solution
Level of attain	ment of CO1 to CO	4:93.7%

BCH 3801 (3)	Biomolecules- II	CO1: Able to explain classification of Proteins based on
		solubility shape and Nucleic acids and their behaviour in
		solution with respect to salt
		CO2:State the central dogma of molecular biology CO3:
		Enhance the capability of identify the reactions of various
		functional group of Bio molecules such as Proteins and Nucleic
		acids
		CO4: Students will apply the theory based tools to solve simple
		Biochemical problems.
		CO5:Describe and recognize amino acid structure describe
		their physical ,chemical properties & predict how their ionic
		changes change with PH
		CO6:Describe primary secondary tertiary structure in proteins
		and identify the types Of interactions important in each case
		CO7:Describe and recognize the structure of nucleic acids
		compare and contrast -DNA and RNA
		CO8: Explain the peptide bond formation and classes of amino
		acid
		CO9: summarize the function of different proteins
		CO10:Recognize the importance of 3 dimensional shape of a
		protein on its function and the role of bonds in maintaining the
		shape of a protein
Level of attainme	ent of CO1 to CO2	10: 82.7%
ВСН	Biomolecules-II	CO1: Develop the skill set in Estimation of Proteins and
3851(2)	Practical	Nucleic acids
		CO2: capable of identifying the amino acid present in
		solution
		CO3: Capable in separation of Biomolecules
		CO4:Record analyse and interpret experimental data
Level of attainme	ent of CO1 to CO_4	4: 94.2%

BCH 4801(3)	Enzymology	CO1: The ability in classifying Enzymes
		CO2: Understand the mechanism of catalysis employed by the
		most well characterized enzymes
		CO3: Identify the methods of enzyme purification
		CO4: Apply the knowledge of immobilized systems and
		application of enzymes to Industrial and clinical processes
		CO5: Describe the chemical nature of enzymes and their
		functions in biochemical reactions
		CO6: Explain how the enzyme activity is regulated and affected
		by temperature, PH and concentration
		CO7:Explain enzyme function with reference to the lock and
		key ,induced fit models
		CO8:Explain the roles of enzymes inhibitors activators and
		coenzymes
		CO9:Recognize enzyme specificity, allosteric enzymes, km
		CO10:Express the important coenzymes and the groups they
		transfer
Level of attainn	nent of CO1 to C	010:78.5%
BCH 4851 (2)	Enzymology	CO1: Able to assay of different types of Enzymes
	Practical	CO2: Capable in Determine the activity of enzymes at different
	II	temperature PH
		CO3: Useful to perform the Industrial Applications and able to

their regulation

Level of attainment of CO1 to CO4:88.9%

design new research methods in the area of Enzymology

CO4: Use enzyme kinetics to evaluate enzyme activities and

BCH 5801 (3)	Intermediary	CO1: Understand how the Biomolecules are utilized in the
	Metabolism-I	body
		CO2:Define the major pathways of intermediary metabolism of
		bio molecules, carbohydrates and lipids
		CO3:Explain how disruptions in intermediary metabolism may
		lead to disease and illustrate with selected examples
		CO4:Understand the general pathophysiology underlying the
		inborn errors of metabolism
		CO5:Understand the genetic inheritance of inborn errors of
		metabolism
		CO6:Describe what happens during carbohydrate digestion
		glycolysis, glycogenesis,glycogenolysis
		CO7:Describe what happens in fatty acid oxidation and
		synthesis as well as in ketogenesis
		CO8:Explain and give examples of the strategies of
		metabolism, emphasizing role of ATP coupled reaction
		CO9:Describe what happens in citric acid cycle, ETC, oxidative
		phosphorylation and explain the role of each process in energy
		production
		CO10:Define catabolism , anabolism and which type of
		reactions involved
Level of attainr	ment of CO1 to CO	D10:80%
BCH 5851(2)	Intemediary	CO1: Hands on experience in Estimation of the Pyruvate,
	Metabolism-I	Alcohol, Glucose and Cholesterol.
	Practical	CO2: Able to apply in Industries and Research Organizations
		CO3: Hands on experience in Estimation of the Phosphorous
		CO4: Hands on experience in Estimation of Cholesterol.
Level of attain	ment of CO1 to C	04:91.6%

BCH 5802 (3)	Intermediary	CO1: Understand how the Bio molecules are utilized in the
	Metabolism II	body
		CO2:Explain what happens during digestion of proteins
		catabolism of amino acids
		CO3:List the essential, non essential amino acids, role of
		essential fatty acids
		CO4:Describe the general strategies for amino acid
		degradation
		CO5:Describe what happens in transamination oxidative
		deamination urea cycle
		CO6:Describe synthesis of purine and pyrimidine nucleotides
		CO7:Explain how disruptions in amino acid and nucleotide
		metabolism may lead to disease and illustrate with selected
		examples
		CO8:Understand the genetic inheritance of inborn errors of
		amino acid and nucleotide porphyrin metabolism CO9:Explain
		the energy requirements for various individuals and determine
		the calorific value of different bio molecules like proteins fats
		carbohydrates
		CO10:Identify the individuals suffering from protein energy
		malnutrition
Level of attainme	nt of CO1 to CO1	0:79.4%
BCH 5851(2)	Intermediary	CO1: Skilled in Estimation of Urea, Uric acid, Ascorbic
	Metabolism-II	acid
	Practical	CO2:Isolate casein from milk
		CO3: Estimate the calcium in milk
		CO4:Calculate Iodine number of oil
Level of attainme	nt of CO1 to CO4	F: 94.3%

BCH-E1- 6803(3)	Immunology &	CO1: Provide to define and understand the scope of clinical
	Clinical	biochemistry in diagnosis.
	Biochemistry	CO2: Provide to Apply theory based tools to chemical
		analysis of biological fluids.
		CO3: Identify whether the organs -kidney, liver,
		gastrointestinal tract functioning properly. CO4: Display
		knowledge of antigen, formation of antibodies, antigen-
		antibody reaction.
		CO5:Differentiate between innate and adaptive immunity
		and explain the main and Defense lines as well as biological
		barriers to infection
		CO6: Explain different disorders related to carbohydrate
		lipid and haemoglobin
		CO7:Illustrate the cell types and organs involved in the
		process of immune response
		CO8:Emphasize and describe antigens immunogens
		antibodies as well as interaction between them
		CO9:Illustrate the adverse effects of the immune system
		including allergy and hypersensitivity
		CO10:Interpret the important immunological disorders and
		principles of autoimmunity & Explain vaccination and its
		role in protection against disease
Level of attainmer	nt of CO1 to CO10: 8	34.3%
BCH-E1-6851(2)	Immunology	CO1: Conduct experiments designed for study of
	&Clinical	nutritional /environmental biochemistry
	Biochemistry	CO2: Interpret experimental/Investigative date and
	Practical	distinguish between normal and abnormal data derived as a
		result of test performed and observed in the laboratory
		CO3: Apply theory based tools to solve simple biochemical
		problems related to subject areas.
		CO4: Work in a laboratory with selected experimental
		techniques and methods which are applied in biochemical

		experiments
Level of attainment of CO1 to CO4: 94%		

BCH A1 6801(3)	Introduction to food	CO1:Describe the composition of cereals & gelatinization
	technology	of starch
		CO2:Knowledge on the process of malting CO3:Identify
		different toxic constituents and able to detoxify the pulses
		CO4: Explain parboiling of rice and their advantages and
		disadvantages
		CO5:Explain the steps involved in refining of oil
		CO6:Knowledge of different forms of fat and oil
		CO7:Describe the post harvest changes in fruits and
		vegetables
		CO8:Differentiate between broilers and layers
		CO9:Identify the fresh fish, fresh egg and post mortem
		changes in meat
		CO10:Knowledge of different milk products and explain
		different steps in processing of milk
Level of attainme	nt of CO1 to CO10: 8	35%
BCH-A1-6851(2)	Introduction to food	CO1:Select appropriate techniques to solve specific
	technology	problems in food analysis
	Practical	CO2:Identify the adulterants in different types of foods
		CO3:Basic idea about the shelf life of food
		CO4:Knowledge on pasteurisation of food
Level of attainme	nt of CO1 to CO4: 94	.1%

BCH-A2-6801(3)	Food processing	CO1:Applies appropriate drying methods for food
	and engineering	CO2: Accounts for changes to the properties of food which
		occur during food processing, preparation and storage
		CO3:Utilize the ionic radiations for killing of
		microorganisms in food
		CO4:Describe the changes in properties of during food
		dehydration
		CO5: Explain the properties of various packaging material
		CO6:Describe the requirements during the refrigeration
		storage of food
		CO7: Explain the changes in properties during freezing of
		food
		CO8:Explain the factors which affect the freezing rate
		CO9: Applies appropriate freezing methods based on the
		type of food
		CO10:Describe different separation processes of food &
		applies different thermal processes for food
Level of attainmen	nt of CO1 to CO10:9	0%
BCH-A2-6851(2)	Food processing	CO1:Select appropriate techniques to solve specific
	and engineering	problems in food processing
	Practical	
		CO2:Knowledge on canning of food
		CO3: Basic idea about the osmotic dehydration of foods
		CO4:Knowledge on minimal processing of foods
Level of attainmen	at of CO1 to CO4: 81	%

BCH-A3-6801(3)	Food safety and	CO1:Appreciate the roles and perspectives of industry,
	quality	government and consumers as stakeholders in food safety
	management	issues;
		CO2:Identify and describe biological and chemical hazards
		in foods;
		CO3: Describe conventional and non-conventional means of controlling hazards in foods;
		CO4:Understand Hazard Analysis Critical Control Point
		(HACCP) as an important quality management system;
		CO5: Describe the general principles of the epidemiology, pathogenesis, detection, and risk assessment of food-borne organisms;
		CO6: Gain a general overview of the international bodies
		involved in global standards for food safety and trade.
		CO7: Demonstrates hygienic understanding and handling of food to ensure a skills related to food safe and appealing product hygiene, safety and the provision of quality food
		CO8:Knowledge on antioxidants and mechanism of its action
		CO9: Explain classification of sweeteners and colors
		CO10: Describe the different type antimicrobial agents
Level of attainmer	nt of CO1to CO10:97	7%
BCH-A3-6851(2)	Food safety and	CO1:Correctly use appropriate laboratory techniques to
	quality	enumerate isolate and identify microorganisms in food
	management	CO2: Estimate the benzoic acid in foods
	practical	CO3:Identify the microorganisms in water
		CO4:Knowledge on biochemical tests for identification of

		microorganism
Level of attainment of CO1 to CO4:92%		