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Chapter 0 

 
Introduction to Fixed Point Theory 

0.1    Introduction 

Definitions  0.1: 

               Suppose X is a non empty set. A mapping T: X → X is called a self map of X. If there is an 

element 𝑥 ∈  X such that  T𝑥 = 𝑥, then x is called a fixed point of the self map T of X.  

Definition 0.2 : 

             A topological space X is said to be a fixed point space if every continuous map of X into itself 

has a fixed point.    

Definition 0.3 :  

             Let  (X,d ) be a complete metric space and T : X → X . Then T is said to be contraction 

mapping if for all  x , y ∈ X ,  d( Tx , Ty ) ≤ k d ( x , y )                                           …  (  0.3.1 )                                                                                

where  0 < k < 1 . 

It is easy to see that the contraction mapping principle, any mapping T satisfying ( 0.3.1 ) will have a 

unique fixed point. 

Definition 0.4 :  

              A metric on a non empty set X is a function (called the distance function or simply distance)  

d : X × X → R (where R is the set of real numbers). For all x, y, z  in X, this  function is required to 

satisfy the following conditions: 

1. d(x, y) ≥ 0     (non-negativity) 

2. d(x, y) = 0   if and only if   x = y      

3. d(x, y) = d(y, x)     (symmetry) 

4. d(x, z) ≤ d(x, y) + d(y, z)     (subadditivity / triangle inequality). 

      The first condition is implied by the others. 

Definition 0.5 : (Huang , Xian ,[14] )  Let E be a real Banach space and P a subset of E. P is 

called a cone if  

(i) P is closed, non-empty and  P ≠ { 0 }         

(ii)  a𝑥 + b𝑦 ∈  P  ∀  𝑥, 𝑦 ∈ P and non-negative real numbers   a and b.  

http://wiki.ask.com/Real_number?qsrc=3044
http://wiki.ask.com/Non-negative?qsrc=3044
http://wiki.ask.com/Symmetric_relation?qsrc=3044
http://wiki.ask.com/Subadditivity?qsrc=3044
http://wiki.ask.com/Triangle_inequality?qsrc=3044
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(iii)   P ∩ (−P)  =  {0}. 

Definition 0.6 :   (Huang , Xian ,[14] ) 

 E is a real Banach space, P is a cone in E with  int  P ≠ ∅  and   ≤  is the partial ordering with  

respect to P. Let X be a non-empty set and  d: X × X → P a mapping such that.  

(d1) 0 ≤ d(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X    (non - negativity) 

(d2)       d(𝑥, 𝑦) = 0 if and only if  𝑥 =  𝑦.  

(d3) d (𝑥, 𝑦)  =  d (𝑦, 𝑥) for all 𝑥, 𝑦 ∈ X   (symmetry) 

(d4)       d (𝑥, 𝑦)  ≤  d (𝑥, 𝑧)  +  d (𝑧, 𝑦) for all  𝑥, 𝑦, 𝑧 ∈ X  (triangle inequality) 

Then d is called a cone-metric on X and (X, d) is called a cone metric  space. 

Definition 0.9  (Lakzian, Arabyani [19] , Definition 2.4) : 

Let (X,d)  be a cone metric space . Then a mapping p : X × X  E  is called  

w - distance on X, if the following are satisfied : 

(a)  0 ≤ p(x, y)     for all x, y  X 

(b)  p(x, z ) ≤ p(x, y) + p(y, z)   for all x, y , z  X 

(c)  p(x, . )  E is lower semi-continuous for all x  X. 

(d)  For any 0 << α, there exists 0 <<  β such that  p(z, x) << β and p(z, y) <<  β imply d (x, y) <<  

α where α, β  E. 

                Fixed point theorems provide conditions under which maps (single or multivalued)   

have solutions. The theory itself is a beautiful mixture of  analysis, topology, and geometry. Over the 

last 100 years or so the theory of fixed points has been revealed as a very powerful and important tool 

in the study of nonlinear phenomena. In particular fixed point techniques have been applied in such 

diverse fields as biology, chemistry, economics, engineering, game theory  and physics. Fixed point 

theory plays an important role in functional analysis, approximation theory, differential equations and 

applications such as boundary value problems etc.( Definition 0.1) 

                     Fixed point theory broadly speaking demonstrates the existence, uniqueness and    

 construction of fixed points of a function or a family of functions under diverse assumptions about 

the structure of the domain X (such as X may be a metric space or normed linear space or a 

topological space) of the concerned functions.  

                     The methods of the theory vary over almost all mathematical techniques. There are many 

works entirely devoted to fixed point theory such as [33],[35],[7]    
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                     Brouwer [7] published his fixed point theorem in 1911 for finite dimensional spaces, 

now known as Brouwer fixed point theorem. Brouwer was elected to the Royal Academy of Sciences 

in 1912 and in the same year, was appointed extraordinary professor of set theory, function theory and 

axiomatic at University of Amsterdam; held the post until he retired in 1951 

( Definition 0.2). 

                    In 1910, Brouwer proved that the closed unit ball of Rn is a fixed point space. Perhaps the 

most important result in fixed point theory is the famous theorem of Brouwer. 

                     In 1930, Schauder [32] extended the result to arbitrary Banach spaces (i.e. to Banach 

Spaces which do not necessarily admit a basis) . In the context of  Banach and Schauder’s theorems, 

they have led to a number of interesting results as well as new techniques for further application.  

                      Banach founded modern functional analysis and made major contributions to the theory 

of topological vector spaces. In addition , he contributed to measure theory, integration, the theory of 

sets and orthogonal series. In his dissertation, written in 1920, he defined axiomatically what today is 

called  a  Banach space. Banach’s fixed point theorem has many applications in solving non-linear 

equations, but suffers from one drawback that the contraction condition forces T to be continuous on 

X. 

                      The famous Banach Contraction Principle states that every contraction in a complete 

metric space has a unique fixed point. It has two core hypotheses: completeness and contractivity. 

Both notions depend on the definition of the underlying metric. Much recent work has focused on the 

extension of the notion of metric spaces and the related  notion  of  contractivity. 

                      In past few decades study of fixed point theory is one of the most interesting fields to 

researchers. In this direction Banach contraction mapping principle is one of the most interesting 

result (Definition 0.3) 

                      The concept of a metric space was introduced in 1906 by  Frechet [13] which furnishes 

the common idealization of a large number of mathematical, physical and other scientific constructs in 

which the notion of a “distance” appears. The objects under consideration may be most varied. They 

may be points, functions, sets and even the subjective experiences of sensations. What matters is the 

possibility of associating a non negative real number with each ordered pair of elements of certain set, 

and that the number associated with pairs and triples of such elements satisfies certain conditions.  

                         A  metric or distance function is a function which defines a distance between elements 

of a set. A set with a metric is called a metric space. A metric induces a  topology on a set but not all 
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topologies can be generated by a metric. When a  topological space has a topology that can be 

described by a metric, we say that the topological space is metrizable (Definition 0.4). 

Fixed Point Theory in Cone Metric Spaces :  One extension of metric spaces is the so called 

cone metric space.  In cone metric spaces, the metric is no longer a positive number but a vector, in 

general an element of a Banach space equipped with a cone. 

                      In 1906, the French mathematician Maurice Frechet [8, 13] introduced the concept of 

metric spaces, although the name “metric” is due to Hausdorff [8, 12]. In 1934, Duro Kurepa[18], 

proposed metric spaces in which an ordered vector space is used as the codomain of a metric instead 

of the set of real numbers. In  literature  Metric Spaces with Vector Valued Metrics are known under 

various names such as   Pseudo Metric Spaces , K-Metric Spaces, Generalized Metric Spaces, Cone-

Valued Metric Spaces, Cone Metric Spaces , Abstract Metric Spaces and Vector Valued Metric 

Spaces. Fixed point theory in K-metric spaces was developed by  Perov in 1964 [28, 29]. 

                        In  2007 ,  Huang , Xian [14] suggested the notion of a cone metric space and 

established  some fixed point  theorems in cone metric spaces, an ambient  space which  is obtained by  

replacing the real axis in the definition of the  distance, by an  ordered real  Banach space whose order 

is  induced by a  normal cone P ( Definition 0.5 & 0.6 ) 

                         Huang , Xian [14] proved some fixed point theorems of contractive mappings , which 

generalize the existing results in metric spaces such as Banach [5] , Kannan [16] etc. 

                      In 2008, Rezapour  and  Hamlbarani [31] , proved that there are no normal  cones with 

normal constant M < 1. Further , in [31] it was shown that for k > 1 there are cones with normal 

constant M > k . An example of a non normal cone is given in [31]. Further , Rezapour  and 

Hamlbarani [31]  obtained generalizations  of  the  results of  Huang , Xian [14] (Theorems 1.19,1.21 

and 1.22) by removing the assumption of normality of the cone. 

                          In 2008, Abbas and Jungck [1] derived several coincidence and common fixed point 

theorems for mappings defined on a cone metric space. 

                           In 2009, Arshad, Azam and Vetro [25] established  some results on points of 

coincidence and common fixed points for three self mappings and these observations generalized the 

results of  Abbas and Jungck [1] ( Theorem 1.37) 

                          Azam and  Arshad [4]  have further improved theorems of  Abbas and  Jungck [1]  

(Theorem 1.37) and  Huang , Xian [14] (Theorems 1.19, 1.21 , 1.22 , 1.23)   
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                          In 2010 ,  Berinde [36] ,  derived  coincidence and common   fixed  point  theorems, 

similar to  those in  Abbas and Jungck [1] (Theorem 1.37) , but for a more general class  of  almost  

contractions.  

                          In 2011 , Olaleru [ 15] , extended  the results of  Arshad, Azam and Vetro [23] 

(Lemma1.43,Proposition1.44 ,Theorem 1.45 , Theorem 1.46 ) 

                          In 2011,  Mehta
   

and  Joshi [ 20] , generalized the result of  Abbas and  Jungck [2] ( 

Theorem 1.37 )  

                          In 2010 ,  Abbas , Rhoades ,  Nazir [26] , extended the results of  Berinde [36] ( 

Theorem 1.55 ) . They have proved the existence of coincidence points and common fixed points for 

four mappings satisfying  generalized contractive conditions without exploiting the notion of 

continuity of  any map involved therein, in a cone metric space. 

                           In 2010, Amit Singh , Dimri  and  Bhatt [3]  proved a unique common fixed point 

theorem for four maps using the notion of weak compatibility without using the notion of continuity 

which generalized and extended the results of  Abbas and Rhoades [2]. 

Fixed Point Theory of  Multifuctions in Cone Metric Spaces : 

                            In 2010 ,  Dimri , Amit Singh  and  Bhatt [11] , proved  common fixed point  

theorems  for  two multivalued  maps  in cone metric spaces  with  normal constant  M = 1  which  

generalized  and  extended  the results  of  Rezapour [30] . 

                            In  2011 ,  Dhanorkar and Salunke [9]  generalized  the results of  Rezapour  [30]  

about  common  fixed  points  of  two multifunctions on cone  metric spaces with normal constant  

M = 1. 

Fixed Point Theory of T – Contractive Mappings in Cone Metric Spaces : 

                            In 2008,  Morales and  Rojas [23] have extended the definition of  a T-contractive 

map to cone metric space.  Morales and  Rojas [23]  extended the result of  Guang and  Zhang [14] 

(Theorem 1.19 ) to T- contraction maps. 

                            In 2009,  Moradi [22] introduced the notion of  T-Kannan contractive mappings in 

metric spaces which extends the notion of Kannan type contractions [16]. 

                             In 2009, Morales and Rojas [24] analyzed the existence of fixed points of  T-

Kannan  type contractive mappings  defined on a complete cone metric space (M, d).  Morales and 

Rojas [24] proposed the notion of T-Chatterjea Mapping. Morales and E.Rojas [24] ,  extended the 

result ( Theorem 1.22 )  of  Guang and   Zhang  [14] and  Moradi [22] (Theorem 2.1) to T- Kannan 
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type contraction  (T K1− Contraction).  Morales and Rojas [24] ,  extended the result (Theorem1.23)  

of  Guang and   Zhang  [14] to T- Kannan type contraction (T K2 – Contraction). In 1968 , Kannan 

[16] established a fixed point theorem. In 1968 , Kannan [16] established a fixed point theorem. It is 

interesting that Kannan’s theorem is independent of  the Banach contraction principle . Kannan’s 

fixed point theorem is very important because Subrahmanyam [34]  proved that Kannan’s theorem 

characterizes the metric completeness. That is, a  Metric space X is complete if and only if every 

Kannan mapping on X  has a fixed  point. 

                              In 2009 , Branciari  [6] , introduced the notion of cone rectangular metric spaces by 

replacing the triangular inequality of  a cone metric space by a rectangular  inequality and they 

investigated some common fixed point theorems for different types of contractive mappings  in cone 

metric spaces. It is to be noted that  any cone metric space is a cone rectangular metric space but the 

converse is not true in general. In 2009 ,  Jleli and  Samet  [21] extended Kannan’s  fixed point 

theorem in a rectangular metric space.  

Fixed Point Theory involving w-distance  and c-distance 

        The notion of  a  metric space with w - distance was introduced in 1996 by Osama Kada, 

Tomonari Suzuki and Wataru Takahashi [27]. 

         In 2009, H. Lakzian, F.Arabyani [17] extended the above notion and introduced the notion of 

cone metric spaces with w -distance and proved some fixed point theorems (Definition 0.9) 

         In  2011 , G. A. Dhanorkar and J. N. Salunke [10] , continued  the  study of  fixed points for self 

maps on cone metric spaces with w- distance. 
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CHAPTER 1 

Common Fixed Point Theorem for Two Self Maps in a 

Cone Metric Space with ω – Distance 

1 Introduction 

  
           Haung and Zhang [2] generalized the concept of metric Space, replacing the set of real  

 

numbers by an ordered Banach space, and obtained some fixed point theorems for mappings  

 

satisfying different contractive conditions. The metric space with w-distance was introduced  

 

by O. Kada et al [5]. These two concepts were combined together and Cone metric space with   

 

w− distance was introduced by H.Lakzian and F.Arabyani [6], and a fixed point theorem was  

 

proved. Abbas and Jungck [1] proved some common fixed point theorems for weakly  

 

compatible mappings in the setting of cone metric space. D. IIić and Rakoćević [3], Rezapour  

 

and Hamlbarani [7] also proved some common fixed point theorems on cone metric spaces.  

 

Our objective is to extend these concepts together to establish a common fixed point theorem  

 

for a pair of weakly compatible mappings in cone metric space using w-distance.  

 

Consequently, we improve and generalize various results existing in the literature. 

            

               In this paper , we extend results of Sami Ullah Khan and Arjamand Bano [8] and  

 

prove some common fixed point theorem for a pair of weakly compatible mappings in cone  

 

metric spaces using  ω – distance on X without using normality in cone metric space. 

 

2 Preliminaries 
 

2.1  Definition: (L.G. Haung and X. Zhang [2]) 

 

Let E be a real Branch Space and P a subset of E. The set P is called a cone if  

 

1. P is closed, non-empty and P ≠ {0 }; 

 

2. a,b  ∈ R , a, b ≥ 0,  x, y Є P then ax + by ∈ P; 
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3. P ∩ (-P) = {0} 

         

For a given cone P of  E ,we define a partial ordering  ≤  on E with respect to P by x ≤ y if and  

 

only if  y – x ∈ P. We write x < y to indicate that x ≤ y but x ≠ y, while x << y  stands  

 

for y – x ∈ Int P, where Int P denotes the interior of P. 

 

2.2  Definition: (L.G. Haung and X. Zhang [2]) 

 

Let E be a real Banach space and P be a cone of  E . The cone P is called normal if  there is a  

 

number K > 0 such that for all  x, y ∈ E,  0 ≤  x ≤  y implies ║ x║ ≤ K║ y║ 

 

The least positive number K satisfying the above inequality is called the normal constant of  

 

P. In the following, we always suppose that E is a real Banach space, P is a cone in E and E is  

 

endowed with the partial ordering induced by P. 

 

2.3  Definition: (L.G. Haung and X. Zhang [2]) 

 

Let X be a non-empty set. Suppose that the mapping d: X x X → P satisfies: 

 

a. 0 < d (x, y) for all x, y ∈  X and d(x,y) = 0 if and only if x = y. 

 

b. d(x, y) = d(y,x) for all x, y ∈  X 

 

c. d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z  ∈ X. 

 

Then d is called a cone metric on X and (X, d) is called a cone metric space.  

 

2.4  Definition: (L.G. Haung and X. Zhang [2]) 

 

Let (X, d) be a cone metric space, {xn} be a sequence in X and x ∈ X. 

 

i. {xn} converges to x if for every c ∈ E with 0 << c, there is an no  such that 

 

    for all n > no, d(xn ,x) << c.  We denote this by lim    x n  =  x or xn → x as n → ∞ 

                                                                                 n→∞ 

 

ii. if for any c ∈ P with 0 << c, there is an no such that for all n, m > no,  

 

     d( xn, xm) << c, then {xn} is called a Cauchy sequence in X. 

 

iii. (X, d) is called a complete cone metric space, if every Cauchy sequence in 
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 X is convergent in X. 

 

2.5   Definition: ( H. Lakzian and F. Arabyani [6] ) 

 

        Let X be a cone metric space with metric d. Then a mapping  ω : X×X→ E  is called  

    

 ω - distance on X if the following conditions are satisfied 

i)   0 ≤ ω(x, y) for all x, y ∈ X; 

 

ii)  ω(x, z) ≤ ω(x, y) + ω(y, z) for all x, y , z  ∈ X;  

 

iii) if  xn → x then ω( y,xn ) → ω( y,x) and ω(xn, y) → ω(x,y) 

 

iv) for any 0 << α , there exists  0 << β such that ω(z, x) << β and ω(z, y) << β imply   

          

           d(x, y) << α for all α, β ∈ E                                                                             … (2.5.1) 

 

2.6  Definition: ( H. Lakzian and F. Arabyani [6] ) 

          

        Let X be a cone metric space with metric d, let ω be a ω – distance on X, x ∈ X and  

        

        { xn }a sequence in X. Then {xn} is called a ω- Cauchy sequence whenever for every  

      

        α ∈ E , 0 << α, there is a positive integer N such that, for all m,n ≥ N , ω( xm,xn ) << α. 

           

        A sequence {xn} in X is called  ω – convergent to a point x ∈ X whenever for every  

 

        α ∈ E, 0 << α, there is a positive integer N such that for all n ≥ N , ω(x,xn) << α.      

        

         (X,d) is a complete cone metric space with ω- distance  if every Cauchy Sequence is  

 

          ω – Convergent. 

 

2.7  Definition: (G. Jungck.and B.E. Rhoades [4])  

             

          Let S and T  be self mappings of a set X. If u = Sx = Tx for some x ∈ X , then x is called a  

 

          coincidence  point  of  S and T and u is called a point of coincidence of S and T. 

 

2.8  Definition: (G. Jungck.and B.E. Rhoades [4]) 

 

         Two self mappings S and T of a set X are said to be weakly compatible if they commute  

 

         at  their coincidence point. i.e; if Su = Tu for some u ∈ X, then STu = TSu. 
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2.9   Proposition: (M.Abbas and G. Jungck [1]) 

      

         Let S and T be weakly compatible self mappings of a set X. If S and T have a unique  

 

         point of  coincidence , i.e; u = Sx = Tx, then u is the unique common fixed point of S  

 

         and T.   

 

2.10  Property: Let (X,d) be a cone metric space. If {xn}, {yn } are sequences in X and  

 

     xn → x and  yn → y then d(xn,yn) → d(x,y). 

 

2.11  Assumption :  

 

               xn → x (ie; d(xn,x) → 0)and xn ≤ y  implies  x ≤ y  

 

3  Main Results 

 
3.1   Lemma :  

 

 Let {yn} be a sequence in X such that  

 

ω( y n+1,yn ) ≤ λ ω( yn, yn-1)                                                                                  …( 3.1.1) 

 

where 0 < λ < 1 then {yn}is a Cauchy Sequence in X. Further, if yn → y as n → ∞  , then  

 

 ω( y,y ) = 0 

  

Proof : We have by (3.1.1), 

        

ω( y n+1,yn ) ≤ λn w( y1, y0) ,      n = 1,2,3,… 

 

∴    for n > m ,  

     

 ω( y n ,ym ) ≤  ω( yn, yn-1) + ω( yn-1, yn-2) + ω( yn-2, yn-3) + … + ω( ym+1, ym) 

                        

                   ≤   λn-1
 ω( y1, y0) + λ n-2

  ω( y1, y0) + … + λ m ω( y1, y0) 

                        

                   =  [ λ n-1  + λ n-2  +  λ n-3 +   …+ λ m]  ω( y1, y0) 

                        

                   = ( 
𝜆𝑚

1−𝜆
 ) ω( y1, y0)                                                                                   …( 3.1.2)                                                   

                        

                   → 0 as m → ∞  

 

Now let 0 << η , choose  δ according to ( 2.5.1). 
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By  (3.1.2), ω( y n ,ym ) << δ for m large 

 

Hence  ω( yn+1, ym)  << δ and  ω( yn+1, yn)  << δ 

 

Hence  d( y m ,yn ) << η  by  ( 2.5.1 ) 

 

Therefore {yn} is a Cauchy Sequence in (X,d) 

 

Since  ω( y n+1,yn )  ≤  λn ω( y1, y0) ,               n = 1,2,… 

 

we get  ω( ym+k ,ym ) ≤ λm ω( y1, y0)                                                                              …(3.1.3) 

     

for large m and all k 

 

Hence it converges to  y , say. 

 

In (3.1.3) , letting k → ∞ we get  

      

            ω( y , ym )  ≤  λm  ω( y1, y0) 

 

Now letting m → ∞, ω( y , ym )  → 0 

    

Hence  ω( y , y )  = 0 

 

3.2   Lemma:  

 

 If  w( x , y ) = 0 and w( y , x) = 0  then 

       

 (i)   w( x , x ) = w( y , y ) = 0 and 

       

(ii)  d(x,y) = 0 so that x = y   

 

Proof : Since  ω( x , x )  ≤  ω( x , y ) +  ω( y , x )  =  0 

                

we get  ω( x , x )  =  0. Similarly  ω( y , y ) = 0 

 

Also we have  ω( x , y ) = 0 so that d(x,y) = 0 

           

Hence  x = y 

 

3.3   Theorem:  

 

Let (X,d) be a complete cone metric space with ω – distance  ω. Let P be a normal cone with  

 

normal constant K on X. Suppose that the mappings S,T : X → X satisfy the following  
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conditions :  

 

(i)  The range of T contains the range of S and T(X) is a totally ordered closed subspace of X. 

 

(ii)  ω(Sx,Sy) ≤ r [ ω(Sx,Ty)+ω(Sy,Tx)+ω(Sx,Tx)+ω(Sy,Ty)+max{ω(Tx,Ty),ω(Ty,Tx)}]              

                                                                                                                                       …(3.3.1) 

 

where r ∈ [0,1 7⁄ )  is a constant. Then S and T have a unique coincidence point in X. 

 

Moreover, if S and T are weakly compatible, then S and T have a unique common fixed  

 

point. 

 

Proof : Let x0 ∈ X. Since S(X) is contained in T(X), we choose a point x1 in X such that  

 

S(x0) = T(x1).  Continuing this process we choose xn and xn+1 in X such that S(xn) = T(xn+1). 

 

Then  ω( Txn+1 , Txn ) = ω(Sxn , Sxn-1 ) 

    

   ≤ r [ ω(Sxn,Txn-1)+ω(Sxn-1,Txn)+ω(Sxn,Txn)+ω(Sxn-1,Txn-1)+max{ω(Txn,Txn-1),ω(Txn-1,Txn)}] 

 

   = r [ ω(Txn+1,Txn-1)+ω(Txn,Txn)+ω(Txn+1,Txn)+ω(Txn,Txn-1)+max{ω(Txn,Txn-1), 

                                                                                                 ω(Txn-1,Txn)}] 

 

∴   w( Txn+1 , Txn ) 

 

 ≤  r [ ω(Txn+1,Txn-1)+ω(Txn,Txn)+ω(Txn+1,Txn)+ω(Txn,Txn-1)+max{ω(Txn,Txn-1), 

                                                                                                                    ω(Txn-1,Txn)}] 

 

Similarly ω( Txn , Txn+1 ) 

  

≤  r [ ω(Txn+1,Txn-1)+ω(Txn,Txn)+ω(Txn+1,Txn)+ω(Txn,Txn-1)+max{ω(Txn,Txn-1), 

                                                                                                                     ω(Txn-1,Txn)}] 

 

∴ max { ω( Txn+1 , Txn ) , ω( Txn+1 , Txn ) } 

 

≤  r [ω(Txn+1,Txn-1)+ω(Txn,Txn)+ω(Txn+1,Txn)+ω(Txn,Txn-1)+max{ω(Txn,Txn-1),ω(Txn-1,Txn)}] 

 

≤  r [ω(Txn+1,Txn) + ω(Txn,Txn-1) + ω(Txn,Txn-1) + ω(Txn-1,Txn) + ω(Txn+1,Txn)+ 

                            

         ω(Txn,Txn-1)+max{ω(Txn,Txn-1),ω(Txn-1,Txn)}] 

 

Hence αn+1 ≤ r [ αn+1 + αn + αn + αn + αn+1 + αn + αn ] , where αn =  max{ω(Txn,Txn-1), 

                                                                                                                         ω(Txn-1,Txn)} 

                      

                  = r [ 2 αn+1 + 5 αn ] 
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               ∴     (1-2r) αn+1   ≤  5 r αn 

                

               ∴        αn+1    ≤ ( 
5𝑟

1−2𝑟
) αn    

               

               ∴         αn   →  0 ( since   
5𝑟

1−2𝑟
 < 1 ) 

 

Hence { Txn } is a Cauchy Sequence in (X,d). 

 

Since T(X) is a totally closed subspace of X, there exists q in T(X) such that Txn → q 

 

 as n → ∞. 

 

Cosequently we can find h in X such that T(h) = q. Thus 

           

ω( Txn , Sh ) = ω(Sxn-1 , Sh ) 

 

≤ r [ ω(Sxn-1,Th)+ω(Sh,Txn-1)+ω(Sxn-1,Txn-1)+ω(Sh,Th)+max{ω(Txn-1,Th),ω(Th,Txn-1)}] 

 

= r [ ω(Txn,Th)+ωw(Sh,Txn-1)+ω(Txn,Txn-1)+ω(Sh,Th)+max{ω(Txn-1,Th),ω(Th,Txn-1)}]  

 

On letting n → ∞ 

 

ω( Th , Sh )   ≤ r [ ω(Th,Th)+ω(Sh,Th)+ω(Th,Th)+ω(Sh,Th)+max{ω(Th,Th),ω(Th,Th)}] 

 

                      = 2r ω(Sh,Th)  

 

∴   𝜔( Th , Sh ) ≤  2r ω(Sh,Th). 

  

 Similarly ω( Sh , Th ) ≤  2r[ ω(Sh,Th) ] 

    

∴  𝜔( Th , Sh )  =  0  and ω(Sh,Th)  =  0 

       
∴  Sh = Th  ( by Lemma 3.2 ) 

 

Hence h is a coincidence point of S and T 

 

Uniqueness : Suppose that there exists a point u in X such that Su = Tu 

 

So we have  ω( Tu,Th ) = ω(Su,Sh ) 

 

≤ r [ ω(Su,Th)+ω(Sh,Tu)+ω(Su,Tu)+ω(Sh,Th)+max{ω(Tu,Th),ω(Th,Tu)}] 

 

= r [ ω(Tu,Th)+ω(Th,Tu)+ω(Tu,Tu)+ω(Th,Th)+max{ω(Tu,Th),ω(Th,Tu)}] 
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∴ ω( Tu,Th ) ≤  r [ ω(Tu,Th) + ω(Th,Tu) + max{ω(Tu,Th),ω(Th,Tu)}] 

 

Similarly ω( Th,Tu ) ≤  r [ ω(Th,Tu) + ω(Tu,Th) + max{ω(Th,Tu),ω(Tu,Th)}] 

 

∴  max {ω( Tu,Th ),ω( Th,Tu )} ≤  r [ ω(Th,Tu) + ω(Tu,Th) + max{ω(Th,Tu),ω(Tu,Th)}] 

 

Suppose ω( Tu,Th ) ≤  r [ ω(Th,Tu) + ω(Tu,Th) + ω(Tu,Th)}] 

 

so that (1-2r) ω( Tu,Th ) ≤ r ω(Th,Tu) 

                  

 ∴   𝜔( Tu,Th )  ≤ 
𝑟

1−2𝑟
  ω(Th,Tu) 

 

Similarly       ω( Th,Tu )  ≤   
𝑟

1−2𝑟
  ω(Tu,Th) 

                                         

                                         ≤    
𝑟2

(1−2𝑟)2  ω(Th,Tu) 

                   

 ∴ ω( Tℎ, T𝑢 )  >   ω( Th,Tu )  ( since 
𝑟

 1−2𝑟
 > 1) , a contradiction 

                    

∴ ω( Tℎ, T𝑢 ) = 0 

 

Similarly        ω( T𝑢, Tℎ )  ˃ >  ω( Tu,Th )  , a contradiction 

                      
∴  ω( T𝑢, Tℎ )  = 0 

                                       
∴   Tu = Th  

 

Hence h is a unique coincidence point of S and T. 

 

Now suppose that S and T are weakly compatible.  

 

Then, by Proposition 2.9 , h is the unique common fixed point of S and T. 

 

Assuming that T(X) is totally ordered , the following result of  Sami Ullah Khan and  

 

Arjamand Bano [8] follows as a Corollary. 

 

3.4   Corollary: ( Theorem 3.2 , Sami Ullah Khan and Arjamand Bano [8]) 

             

 Let (X,d) be a complete cone metric space with ω – distance ω. Let P be a normal cone with  

 

normal constant K on X. Suppose that the mappings S,T : X → X satisfy the following  

 

conditions : 

 

(i)  The range of T contains the range of S and T(X) is a totally ordered closed subspace of X. 
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(ii)  ω(Sx,Sy) ≤ r [ ω(Sx,Ty) + ω(Sy,Tx) + ω(Sx,Tx) + ω(Sy,Ty) + ω(Tx,Ty) ]             …(3.4.1) 

                                       

where r ∈ [0,1 7⁄ ] is a constant. Then S and T have a unique coincidence point in X. 

 

Moreover, if S and T are weakly compatible, then S and T have a unique common fixed  

 

point. 

 

3.5   Remark:  

 

In theorem 3.3, if T = I x , the identity map on X , then as a consequence of theorem 3.3, we  

 

obtain the following result. 

 

3.6   Corollary: 

           

         Let (X,d) be a complete cone metric space with  ω – distance  ω. Let P be a normal cone  

 

with normal constant K on X. Suppose that the mappings S,T : X → X satisfy the following  

 

conditions : 

 

(i) The range of T contains the range of S and T(X) is a totally ordered closed subspace of X. 

 

(ii) ω(Sx,Sy) ≤ r [ ω(Sx,y)+ω(Sy, x)+ω(Sx, x)+ω(Sy, y)+max{ω(x,y),ω(y,x)}]             …(3.6.1)                 

 

where r ∈ [0,1 7⁄ ) is a constant. Then S and T have a unique coincidence point in X.  

 

Moreover, if S and T are weakly compatible, then S and T have a unique common fixed  

 

point. 
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CHAPTER 2 

Fixed Point Theorems for a Self Map in Ordered Cone Metric Space Under 

Lattice Ordered c-Distance 

1 Introduction 

                       Huang and Zhang [13]  introduced the concept of the cone metric space, replacing 

the set of real numbers by an ordered Banach space, and they showed some fixed point theorems 

of contractive type mappings on cone metric spaces. The Banach contraction principle is the 

most celebrated fixed point theorem [6]. Afterward, some various definitions of contractive 

mappings were introduced by other researchers and several fixed and common fixed point 

theorems were considered in [7, 10, 17, 19, 25]. Then, several fixed and common fixed point 

results in cone metric spaces were introduced in [2, 3, 9, 15, 24] and the references contained 

therein. Also, the existence of fixed and common fixed points in partially ordered cone metric 

spaces was studied in [4, 5, 27]. In 1996, Kada et al. [18] defined the concept of w-distance in 

complete metric space. Later, many authors proved some fixed point theorems in complete 

metric spaces (see [1, 20, 21, 23]). Also, note that Saadati et al. [26] introduced a probabilistic 

version of the w-distance of  Kada et al. in a Menger probabilistic metric space. Recently, Cho et 

al. [8], and Wang and Guo [29] defined a concept of the c-distance in a cone metric space, which 

is a cone version of the w-distance of Kada et al. and proved some fixed point theorems in 

ordered cone metric spaces. Sintunavarat et al. [28] generalized  the Banach contraction theorem 

on c-distance of Cho et al. [8]. Also, Dordevi´c et al. in [12] proved some fixed point and 

common fixed point theorems under c-distance for contractive mappings in tvs-cone metric 

spaces. 

                       H. Rahimi, G. Soleimani Rad [ 22 ] extended the Banach contraction principle [6] 

and Chatterjea contraction theorem [7] on c-distance of Cho et al. [8], and  proved some fixed 

point and common fixed point  theorems in ordered cone metric spaces. In this paper we extend 

the results of  [22].   Also we introduce the notion of lattice ordered c-distance and   prove some 

fixed point theorems under a lattice ordered c-distance in ordered cone metric spaces, for a single 

function. 
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2 Preliminaries 

First let us start with some basic definitions 

Definition 2.1 ([13])  

                  Let E be a real Banach space and P a subset of E. P is called a cone if  

(i) P is closed, non-empty and  P ≠ { 0 }         

(ii)  𝑎𝑥 + 𝑏𝑦 ∈  P  ∀  𝑥, 𝑦 ∈ P and non-negative real numbers a and b.  

(iii)   P ∩ (−P)  =  {0}. 

 Definition 2.2 ([13])  

                      We define a partial ordering    on  E with respect to P and  P ⊂ E  by  𝑥 ≤  𝑦  if 

and  only  if 𝑦 − 𝑥 ∈ P. We shall write  𝑥 << 𝑦 if 𝑦 − 𝑥 ∈ int P, int P denotes the interior of  P.  

We denote by ‖ . ‖ the norm on E. The cone P is called normal if there is a number K > 0 such 

that for all  𝑥, 𝑦 ∈ E , 0 ≤ 𝑥 ≤ 𝑦 implies 

|| 𝑥||  ≤  K || 𝑦||                                                                 

 The least positive number K satisfying (1.14.1) is called the normal constant of  P.  

Definition 2.3 ([13])  

                  A cone P is called regular if every increasing sequence which is bounded from 

above is convergent. That is, if { 𝑥n}n≥1 is a sequence such that 𝑥1 ≤ 𝑥2≤… ≤ 𝑦 for some 𝑦 ∈E, 

then there is 𝑥 ∈ E such that lim
n→∞

‖𝑥n − 𝑥‖ = 0 

 Definition 2.4 ([13])  

                   Let X be a nonempty set and E be a real Banach space equipped with  

the partial ordering ≤ with respect to the cone P ⊂ E. Suppose that the mapping 

 d : X × X → E satisfies:  

(d1) 0 ≤ d(x, y) for all  x, y ∈ X and d(x, y) = 0 if and only if x = y;  

(d2) d(x, y) = d(y, x) for all x, y ∈ X;  

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.  

    Then, d is called a cone metric on X and (X,d) is called a cone metric space. 
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Definition 2.5 ([13])  

                    Let (X,d) be a cone metric space, {xn} a sequence in X and x ∈ X.  

(i) {xn} converges to x if for every c ∈ E with 0 ≪ c there exists  n0 ∈ N such that    

     d(xn, x) ≪ c for all n > n0, and we write lim n→∞  d(xn, x) = 0. 

 (ii) {xn} is called a Cauchy sequence if for every c ∈ E with 0 ≪ c there exists  n0 ∈ N such    

       that d(xn, xm) ≪ c for all m,n > n0, and we write lim n,m→∞d(xn, xm) = 0.  

(iii) If every Cauchy sequence in X is convergent, then X is called a complete cone metric  

      space. 

Lemma 2.6 ([13, 24]) 

              Let (X,d) be a cone metric space and P be a normal cone with normal constant k. Also, 

let {xn} and {yn} be sequences in X and x, y ∈ X. Then the following hold:  

(c1) {xn} converges to x if and only if d(xn, x) → 0 as n →∞. 

(c2) If {xn} converges to x and {xn} converges to y, then x = y.  

(c3) If{xn}converges to x, then{xn}is a Cauchy sequence.  

(c4) If xn → x and yn → y as n → ∞, then d(xn, yn) → d(x, y) as n →∞.  

(c5) {xn} is a Cauchy sequence if and only if d(xn, xm) → 0 as n,m →∞.  

Lemma 2.7 ([4, 14])   

Let E be a real Banach space with a cone P in E. Then, for all u,v,w,c ∈ E, the following hold:  

(p1) If u ≤ v and v ≪ w, then u ≪ w. 

 (p2) If 0 ≤ u ≪ c for each c ∈ int P, then u = 0.  

(p3) If u ≤ λu where u ∈ P and 0 < λ < 1, then u = 0.  

(p4) Let xn → 0 in E, 0 ≤ xn and 0 ≪ c. Then there exists positive integer n0 such that xn ≪ c  
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      for each n > n0.  

(p5) If 0 ≤ u ≤ v and k is a nonnegative real number, then 0 ≤ ku ≤ kv. 

 (p6) If 0 ≤ un ≤ vn for all n ∈ N and un → u, un → u as n →∞, then 0 ≤ u ≤ v.  

Definition 2.8 ([8, 29])  

               Let (X,d) be a cone metric space. A function q : X×X → E is called a c-distance on X if 

the following are satisfied: 

 (q1) 0 ≤ q(x, y) for all x, y ∈ X; 

 (q2) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X;  

 (q3) for all n ≥ 1 and x ∈ X, if q(x, yn) ≤  u for some u , then q(x, y) ≤ u whenever {yn} is a    

         sequence in X converging to a point y ∈ X;  

(q4) for all c ∈ E with 0 ≪ c, there exists e ∈ E with 0 ≪ e such that q(z, x) ≪ e  

        and q(z, y) ≪ e imply d(x, y) ≪ c.  

Remark 2.9 ([8, 29])    

 Each w-distance q in a metric space (X,d) is a c-distance (with E = R+ and P = [0,∞)). But the 

converse does not hold. Therefore, the c-distance is a generalization of w-distance. 

Examples  2.10 ([8, 28, 29])  

(1) Let (X,d) be a cone metric space and P be a normal cone. Put q(x, y) = d(x, y) for all 

      x, y ∈ X. Then q is a c-distance.  

(2) Let E = R, X = [0,∞) and P = {x ∈ E : x ≥ 0}. Define a mapping d : X ×X → E by  

      d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a cone metric space. Define a mapping  

       q : X ×X → E  by q(x, y) = y for all x, y ∈ X. Then q is a c distance.  

 (3) Let E = C1 R [0,1] with the norm ∥x∥= ∥x∥∞+∥x′∥∞ and consider the cone 

      P = {x ∈ E : x(t) ≥ 0  on [0,1]}. Also, let X = [0,∞) and define a mapping d : X×X → E by  
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      d(x, y) = |x−y|ψ  for all x, y ∈ X, where ψ : [0,1] → R such that  ψ(t) = 2t.  

  Then (X,d) is a cone metric space. Define a mapping q : X × X → E by q(x, y) = (x + y)ψ  

  for all x, y ∈ X. Then q is c-distance. 

 (4) Let (X,d) be a cone metric space and P be a normal cone. Put q(x, y) = d(w, y)  

       for all x, y ∈ X, where w ∈ X is a fixed point. Then q is a c-distance. 

Remark 2.11 ([8, 28, 29])   

   From Examples 2.10 [1,2,4], we have three important results   

(i)  Each cone metric d on X with a normal cone is a c-distance q on X.  

(ii) For c-distance q, q(x, y) = 0 is not necessarily equivalent to x = y for all  x,y ∈ X. 

(iii) For c-distance q, q(x,y) = q(y,x) does not necessarily hold for all x,y ∈ X.  

Lemma 2.12 ([8, 28, 29])  

              Let (X,d) be a cone metric space and let q be a c-distance on X. Also, let {xn} and {yn} 

be sequences in X and x, y, z ∈ X. Suppose that{un}and{vn}are two sequences in P converging to 

0. Then the following hold:  

(qp1)  If q(xn, y) ⪯ un and q(xn, z) ⪯ vn for n ∈ N, then y = z. Specifically,  

           if q(x, y) = 0 and q(x, z) = 0, then y = z.  

(qp2) If q(xn, yn) ⪯ un and q(xn, z) ⪯ vn for n ∈ N, then {yn} converges to z.  

(qp3) If q(xn, xm) ⪯ un for m > n, then {xn} is a Cauchy sequence in X. 

 (qp4) If q(y, xn) ⪯ un for n ∈ N, then {xn} is a Cauchy sequence in X. 

The following special case of (qp3) plays a crucial role in determining Cauchy sequences, in 

Section 3 

Lemma 2.13 : 

In addition to the hypothesis of  Lemma 2.12, assume the following : 
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 Let z ∈ P , 0 ≤ 𝜇 < 1 and  q ( 𝑥𝑛 , 𝑥𝑚 ) ≤  𝜇𝑛 𝑧0  ∀  𝑚 ≥ 𝑛.  

Then { 𝑥𝑛 } is a Cauchy sequence. ( ∵ 𝑢𝑛 = 𝜇𝑛 𝑧0 ⟶ 0 as n  ⟶ ∞ ) 

Definition 2.14 ([4, 8])  

                  Let ( X, ≤) be a partially ordered set. Two mappings f, g : X → X are said to be 

weakly increasing if f x ≤ g f x and g x ≤ f g x hold for all x ∈ X. 

Definition 2.15 ([9]) 

            A lattice is a partially ordered set  S in which any two elements a,b ∈ S have the  

supremum (a ∪ b) and the infimum (a ∩ b). Sometimes we write  max { a,b } for (a ∪ b) and  

min { a,b } for  (a ∩ b). 

 H. Rahimi,  G. Soleimani Rad [ 22 ] proved following theorem.  

Theorem 2.16 : ([22] , Theorem 3.1 ) 

                 Let (X, ≤) be a partially ordered set and (X,d) be a complete cone  metric space. Also, 

let q be a c-distance on X and  f : X → X be a continuous and non decreasing mapping with 

respect to ≤. Suppose that there exist mappings  α,β,γ : X → [0,1) such that the following four 

conditions hold:  

(i) α(fx) ≤ α(x), β(fx) ≤ β(x) and γ(fx) ≤ γ(x) for all x ∈ X                                       … (2.16.1) 

 (ii) (α + 2β + 2γ)(x) < 1 for all x ∈ X                                                                      … (2.16.2) 

(iii) for all x,y ∈ X with x ≤ y, q(fx,fy) ⪯ α(x)q(x,y) + β(x)q(x,fy) + γ(x)q(y,fx)       … (2.16.3)                                                                                                                                    

(iv) for all x,y ∈ X with x ≤ y, q(fy,fx) ⪯ α(x)q(y,x) + β(x)q(fy,x) + γ(x)q(fx,y)        … (2.16.4) 

  If there exists  x0 ∈ X such that x0 ≤ fx0, then f  has a fixed point. Moreover, if  fz = z,  

  then q(z,z) = 0. 

Note : In the above theorem 𝛼 , 𝛽 , 𝛾  are functions of  x. In section 3, we take 𝛼 , 𝛽 , 𝛾 to be 

constants so that above (i) becomes obvious. 
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3 Main results 

                 In this section , we extend the result  of  H. Rahimi,  G. Soleimani [ 22 ].  Also we 

introduce the notion of lattice ordered c-distance and   prove some fixed point theorems under a 

lattice ordered c-distance in ordered cone metric spaces, for a single function. 

                 Let us introduce the notion of a lattice ordered c-distance in cone metric spaces. 

Definition : Suppose (X,d) is a cone metric space and q : X × X → E is a c-distance.  Clearly, 

the image  q ( X × X ) of  X × X under q is a subset of P. If the image q ( X × X ) is a lattice in P, 

we say that q is a lattice ordered c-distance on X. 

                 Now we state and prove two of our main results with the underlying space X having a 

lattice ordered c-distance. This becomes necessary since we consider maximum of three terms in 

the control function which we cannot do if the c-distance is not lattice ordered. 

Theorem 3.1  

               Let (X , ≤) be a partially ordered set and (𝑋, 𝑑) be a complete cone metric space. Also, 

let q be a lattice ordered c-distance on X  and f  : X → X be continuous non decreasing mapping 

with respect to ≤ . Suppose  𝜆 ∈ [ 0, ½ ) and q satisfies the following conditions :  

(i) x ≤ y ≤ z implies q(𝑥, 𝑦)  ≤ 𝑞(𝑥, 𝑧) and q(𝑦, 𝑧)  ≤ 𝑞(𝑥, 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ X                  …(3.1.1) 

(ii)𝑞(𝑓𝑥, 𝑓𝑦)  ≤  𝜆 max{𝑞(𝑥, 𝑦) , 𝑞(𝑥, 𝑓𝑦) , 𝑞(𝑦, 𝑓𝑥)}   𝑖𝑓 𝑥 ≤ 𝑦                              ….(3.1.2) 

             Suppose  there exists  x0 ∈ X such that x0 ≤ f x0. Then f  has a fixed  point  in  X. 

Moreover, if  f z = z, then q(z,z) = 0. 

Proof :  Write x n = f x n-1 , n = 1,2,3,… 

If xn = xn+1 for some n, then xn = xn+1 = f xn  so that  xn is a fixed point of f  . Now,  

suppose that  fx0 ≠ x0. Since f is non decreasing with respect to ≤ and x0 ≤ fx0,  

we get f x 0 ≤  f 2 x 0 ⟹ x 1 ≤ x 2          

In a similar way we can show that x n ≤ x n+1 ∀ n = 0,1,2,… 

Here x n = f x n-1 = f n x 0 
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Now, let x = xn and y = x n−1 in (3.1.2), we have 

∴  𝑞 (𝑥𝑛, 𝑥𝑛+1)    

  =  𝑞 (𝑓𝑥𝑛−1, 𝑓𝑥𝑛) 

≤ λ max { 𝑞 (𝑥𝑛−1, 𝑥𝑛), 𝑞 (𝑥𝑛−1, 𝑓𝑥𝑛), 𝑞 (𝑥𝑛, 𝑓𝑥𝑛−1)}  ( ∵ 𝑥𝑛−1  ≤  𝑥𝑛  ) 

=  λ max { 𝑞 (𝑥𝑛−1, 𝑥𝑛), 𝑞 (𝑥𝑛−1, 𝑥𝑛+1), 𝑞 (𝑥𝑛, 𝑥𝑛)}   

=  λ  𝑞 (𝑥𝑛−1, 𝑥𝑛+1)   ( from  (3.1.1) ) 

≤  λ { 𝑞 (𝑥𝑛−1, 𝑥𝑛) + 𝑞 (𝑥𝑛, 𝑥𝑛+1) }   

⟹ 𝑞 (𝑥𝑛, 𝑥𝑛+1)   ≤  ( 
𝜆

1−𝜆
 ) 𝑞 (𝑥𝑛−1, 𝑥𝑛) 

∴ By induction ,  

         𝑞 (𝑥𝑛, 𝑥𝑛+1)   ≤  ( 
𝜆

1−𝜆
 )𝑛−1 𝑞 (𝑥0 , 𝑥1)   ∀ n ∈ N 

Now 
𝜆

1−𝜆
< 1  𝑠𝑖𝑛𝑐𝑒   0 ≤ λ < ½  

∴  By taking   𝜇 =  
𝜆

1−𝜆
   and  𝑧0 = 𝑞 (𝑥0 , 𝑥1)  ∈ 𝑃, from Lemma 2.13, we get that { 𝑥𝑛 } is a  

Cauchy sequence in X. Since X is complete, there exists a point z ∈ X such that  𝑥𝑛 → z as  

n →  ∞ . Continuity of  f  implies that 𝑥𝑛+1 = 𝑓𝑥𝑛 → f z as n →  ∞ and since the limit of  a  

sequence is unique, we get that  fz = z. Thus, z is a fixed point of  f. 

since  fz = z ,  𝑞 (𝑧, 𝑧)   = 𝑞 (𝑓𝑧, 𝑓𝑧)    

                                     ≤  λ max { 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑓𝑧), 𝑞 (𝑧, 𝑓𝑧)}   

                                      =  λ max { 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑧)}   

                                      =  λ 𝑞 (𝑧, 𝑧) 

          ⟹  𝑞 (𝑧, 𝑧) = 0 

Theorem 3.2 : Let (X , ≤) be a partially ordered set and (𝑋, 𝑑) be a complete cone metric 

space. Also, let q be a lattice ordered c-distance on X  and f  : X → X be continuous non 
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decreasing mapping with respect to ≤ . Suppose  𝜆 ∈ [ 0, ½ ) and q satisfies the following 

conditions :  

(i) x ≤ y ≤ z implies q(𝑦, 𝑥)  ≤ 𝑞(𝑧, 𝑥) and q(𝑧, 𝑦)  ≤ 𝑞(𝑧, 𝑥) ∀𝑥, 𝑦, 𝑧 ∈ X                  …(3.2.1) 

(ii) 𝑞(𝑓𝑦, 𝑓𝑥)  ≤  𝜆 max{𝑞(𝑦, 𝑥) , 𝑞(𝑓𝑦, 𝑥) , 𝑞(𝑓𝑥, 𝑦)}   𝑖𝑓 𝑥 ≤ 𝑦                             ….(3.2.2) 

             Suppose there exists  x0 ∈ X such that x0 ≤ f x0. Then f  has a fixed point in  X.  

Moreover,   if  f z = z, then q(z,z) = 0. 

Proof : As in Theorem 3.1 , write xn = f xn-1 , n = 1,2,3,… 

Then xn ≤ xn+1 for n = 0,1,2,… since f  is non- decreasing 

 Here x n = f x n-1 = f n x 0 

Now, let x = xn-1 and y = x n in (3.1.2), we have 

∴    𝑞 (𝑥𝑛+1, 𝑥𝑛)    

  =  𝑞 (𝑓𝑥𝑛, 𝑓𝑥𝑛−1) 

≤ λ max { 𝑞 (𝑥𝑛, 𝑥𝑛−1), 𝑞 (𝑓𝑥𝑛, 𝑥𝑛−1), 𝑞 (𝑓𝑥𝑛−1, 𝑥𝑛)}  ( ∵ by (3.2.1) ) 

=  λ max { 𝑞 (𝑥𝑛, 𝑥𝑛−1), 𝑞 (𝑥𝑛+1, 𝑥𝑛−1), 𝑞 (𝑥𝑛, 𝑥𝑛)}   

=  λ  𝑞 (𝑥𝑛+1, 𝑥𝑛−1)   ( from  3. 2.1 ) 

≤  λ { 𝑞 (𝑥𝑛+1, 𝑥𝑛)  +  𝑞 (𝑥𝑛, 𝑥𝑛−1) }   

⟹ 𝑞 (𝑥𝑛+1, 𝑥𝑛)   ≤  ( 
𝜆

1−𝜆
 ) 𝑞 (𝑥𝑛, 𝑥𝑛−1) 

∴ By induction ,  

         𝑞 (𝑥𝑛+1, 𝑥𝑛)   ≤  ( 
𝜆

1−𝜆
 )𝑛−1 𝑞 (𝑥1 , 𝑥0)  for n = 1,2,3,… 

Now 
𝜆

1−𝜆
< 1  since   0 ≤ λ < ½ 

∴ By Lemma 2.13 , { 𝑥𝑛 } is a Cauchy sequence in X. Since X is complete, there exists  a  

point z ∈ X such that  𝑥𝑛 → z as n →  ∞ . Continuity of  f  implies that 𝑥𝑛+1 = 𝑓𝑥𝑛 → f z as 



32 
 

 n →  ∞ so that  fz = z. Thus, z is a fixed point of  f. 

since  fz = z ,  𝑞 (𝑧, 𝑧)   = 𝑞 (𝑓𝑧, 𝑓𝑧)    

                                     ≤  λ max { 𝑞 (𝑧, 𝑧), 𝑞 (𝑓𝑧, 𝑧), 𝑞 (𝑓𝑧, 𝑧)}   

                                      =  λ max { 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑧)}   

                                      =  λ 𝑞 (𝑧, 𝑧) 

          ⟹  𝑞 (𝑧, 𝑧) = 0. 

In the following theorem we obtain a condition under which a function may admit unique fixed 

point. 

Theorem 3.3 : Let (X , ≤) be a partially ordered set and (𝑋, 𝑑) be a complete cone metric 

space. Also, let q be a lattice ordered c-distance on X  and f  : X → X be continuous non 

decreasing mapping with respect to ≤ . Suppose  𝜆 ∈ [ 0, ½ ) and q satisfies the following 

conditions :  

(i)  x ≤ y ≤ z   implies    q(𝑥, 𝑦)  ≤ 𝑞(𝑥, 𝑧) ;  q(𝑦, 𝑥)  ≤ 𝑞(𝑧, 𝑥)                                   …(3.3.1)                           

                 q(𝑦, 𝑧)  ≤ 𝑞(𝑥, 𝑧)  ;  q(𝑧, 𝑦)  ≤ 𝑞(𝑧, 𝑥)     ∀  𝑥, 𝑦, 𝑧 ∈ X                              … (3.3.2) 

 (ii) 𝑞(𝑓𝑥, 𝑓𝑦)  ≤  𝜆 𝑚𝑎𝑥{𝑞(𝑥, 𝑦) , 𝑞(𝑥, 𝑓𝑦) , 𝑞(𝑦, 𝑓𝑥)}   𝑖𝑓 𝑥 ≤ 𝑦                            … (3.3.3) 

(iii) 𝑞(𝑓𝑦, 𝑓𝑥)  ≤  𝜆 𝑚𝑎𝑥{𝑞(𝑦, 𝑥) , 𝑞(𝑓𝑦, 𝑥) , 𝑞(𝑓𝑥, 𝑦)}   𝑖𝑓 𝑥 ≤ 𝑦                              ...(3.3.4) 

                    Suppose  there exists  x0 ∈ X such that x0 ≤ f x0. Then f  has a fixed  point in  X  and  

no two fixed points are comparable. Moreover,  if  f z = z, then q(z,z) = 0. 

Proof :  Write x n = f x n-1 , n = 1,2,3,… 

If xn = xn+1 for some n, then xn = xn+1 = f xn  so that  xn is a fixed point of  f  . Now, suppose that  f 

x0 ≠ x0. Since f  is non decreasing with respect to ≤ and x0 ≤ fx0,  

we get f x 0 ≤  f 2 x 0 ⟹ x 1 ≤ x 2          

In a similar way we can show that x n ≤ x n+1 ∀ n = 0,1,2,… 

Here x n = f x n-1 = f n x 0 
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Now, let x = xn and y = x n−1 in (3.3.3), we have 

∴  𝑞 (𝑥𝑛, 𝑥𝑛+1)    

  =  𝑞 (𝑓𝑥𝑛−1, 𝑓𝑥𝑛) 

≤ λ max { 𝑞 (𝑥𝑛−1, 𝑥𝑛), 𝑞 (𝑥𝑛−1, 𝑓𝑥𝑛), 𝑞 (𝑥𝑛, 𝑓𝑥𝑛−1)}  ( ∵ 𝑥𝑛−1  ≤  𝑥𝑛  ) 

= λ max { 𝑞 (𝑥𝑛−1, 𝑥𝑛), 𝑞 (𝑥𝑛−1, 𝑥𝑛+1), 𝑞 (𝑥𝑛, 𝑥𝑛)}   

=  λ  𝑞 (𝑥𝑛−1, 𝑥𝑛+1)   ( from  3.3.1 ) 

≤  λ { 𝑞 (𝑥𝑛−1, 𝑥𝑛) +  𝑞 (𝑥𝑛, 𝑥𝑛+1) }   

⟹ 𝑞 (𝑥𝑛, 𝑥𝑛+1)   ≤  ( 
𝜆

1−𝜆
 ) 𝑞 (𝑥𝑛−1, 𝑥𝑛) 

∴ By induction ,  

         𝑞 (𝑥𝑛, 𝑥𝑛+1)   ≤  ( 
𝜆

1−𝜆
 )𝑛−1 𝑞 (𝑥0 , 𝑥1) 

Similarly, using (3.3.4), we get  

    𝑞 (𝑥𝑛+1, 𝑥𝑛)    

=  𝑞 (𝑓𝑥𝑛, 𝑓𝑥𝑛−1) 

≤ λ max { 𝑞 (𝑥𝑛, 𝑥𝑛−1), 𝑞 (𝑓𝑥𝑛, 𝑥𝑛−1), 𝑞 (𝑓𝑥𝑛−1, 𝑥𝑛)}  ( ∵ by (3.2.1) ) 

=  λ max { 𝑞 (𝑥𝑛, 𝑥𝑛−1), 𝑞 (𝑥𝑛+1, 𝑥𝑛−1), 𝑞 (𝑥𝑛, 𝑥𝑛)}   

=  λ  𝑞 (𝑥𝑛+1, 𝑥𝑛−1)   ( from  3. 2.1 ) 

≤  λ { 𝑞 (𝑥𝑛+1, 𝑥𝑛) + 𝑞 (𝑥𝑛, 𝑥𝑛−1) }   

⟹ 𝑞 (𝑥𝑛+1, 𝑥𝑛)   ≤  ( 
𝜆

1−𝜆
 ) 𝑞 (𝑥𝑛, 𝑥𝑛−1) 

∴ By induction ,  

         𝑞 (𝑥𝑛+1, 𝑥𝑛)   ≤  ( 
𝜆

1−𝜆
 )𝑛−1 𝑞 (𝑥1 , 𝑥0)  for n = 1,2,3,… 

Now 
𝜆

1−𝜆
< 1  𝑠𝑖𝑛𝑐𝑒   0 ≤ λ < ½ 
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∴ By Lemma 2.11 , { 𝑥𝑛 } is a Cauchy sequence in X. Since X is complete, there  

exists a point z ∈ X such that  𝑥𝑛 → z as n →  ∞ .  

∴ By  continuity of  f  we get   

𝑥𝑛+1 = 𝑓𝑥𝑛 → f z as n →  ∞ . 

Hence   fz = z. Thus, z is a fixed point of  f. 

Now        𝑞 (𝑧, 𝑧)   = 𝑞 (𝑓𝑧, 𝑓𝑧)    

                              ≤  λ max { 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑓𝑧), 𝑞 (𝑧, 𝑓𝑧)}   

                               = λ max { 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑧)}   

                               =  λ 𝑞 (𝑧, 𝑧) 

          ⟹  𝑞 (𝑧, 𝑧) = 0 

Uniqueness : Suppose z and z′ are two comparable fixed points of  f so that  fz = z and  

 fz' = z' 

We may suppose without loss of generality that z ≤ z' 

         Now         𝑞 (𝑧, 𝑧′)   

                        = 𝑞 (𝑓𝑧, 𝑓𝑧′)    

                        ≤  λ max { 𝑞 (𝑧, 𝑧′), 𝑞 (𝑧, 𝑓𝑧′), 𝑞 (𝑧′, 𝑓𝑧)}  (since z ≤ z' from  (3.3.3)) 

                         =  λ max { 𝑞 (𝑧, 𝑧′), 𝑞 (𝑧, 𝑧′), 𝑞 (𝑧′, 𝑧)}   

                         =  λ 𝑚𝑎𝑥{ 𝑞 (𝑧, 𝑧′), 𝑞 (𝑧′, 𝑧)}   

  ∴   𝑞 (𝑧, 𝑧′)     ≤   λ 𝑚𝑎𝑥{ 𝑞 (𝑧, 𝑧′), 𝑞 (𝑧′, 𝑧)}                                        …(3.3.5) 

Also  𝑞 (𝑧′, 𝑧)   = 𝑞 (𝑓𝑧′, 𝑓𝑧)    

                         ≤  λ max { 𝑞 (𝑧′, 𝑧), 𝑞 (𝑓𝑧′, 𝑧), 𝑞 (𝑓𝑧, 𝑧′)} (since z ≤ z' from  (3.3.4))             

                          =  λ max { 𝑞 (𝑧′, 𝑧), 𝑞 (𝑧′, 𝑧), 𝑞 (𝑧, 𝑧′)}   
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                          =  λ 𝑚𝑎𝑥 { 𝑞 (𝑧′, 𝑧), 𝑞 (𝑧, 𝑧′)}    

    ∴   𝑞 (𝑧′, 𝑧)    ≤   λ 𝑚𝑎𝑥{ 𝑞 (𝑧′, 𝑧), 𝑞 (𝑧, 𝑧′)}                                       …(3.3.6) 

Suppose  max{ 𝑞 (𝑧, 𝑧′), 𝑞 (𝑧′, 𝑧)}    ≠  0   

Then from (3.3.5) and (3.3.6) 

max { 𝑞 (𝑧, 𝑧′), 𝑞 (𝑧′, 𝑧)}  ≤   λ 𝑚𝑎𝑥  { 𝑞 (𝑧′, 𝑧), 𝑞 (𝑧, 𝑧′)} 

                                         <   𝑚𝑎𝑥 { 𝑞 (𝑧′, 𝑧), 𝑞 (𝑧, 𝑧′)}  , a contradiction 

Hence    max{ 𝑞 (𝑧′, 𝑧), 𝑞 (𝑧, 𝑧′)}  = 0  

Consequently,   𝑞 (𝑧′, 𝑧)  = 0 = 𝑞 (𝑧, 𝑧′)                                    

                ∴       z = z'  

Hence  f  cannot have two comparable fixed points. 

The following theorem which is an analogue of theorem 3.1, for decreasing functions can be  

easily established. 

Theorem 3.4 :  Let (X , ≤) be a partially ordered set and (𝑋, 𝑑) be a complete cone metric 

space. Also, let q be a lattice ordered c-distance on X  and f  : X → X be continuous non 

decreasing mapping with respect to ≤ . Suppose  𝜆 ∈ [ 0, ½ ) and q satisfies the following 

conditions :  

(i) x ≤ y ≤ z implies q(𝑥, 𝑦)  ≤ 𝑞(𝑥, 𝑧) and q(𝑦, 𝑧)  ≤ 𝑞(𝑥, 𝑧) ∀𝑥, 𝑦, 𝑧 ∈ X                 …(3.4.1) 

(ii)𝑞(𝑓𝑥, 𝑓𝑦)  ≤  𝜆 max{𝑞(𝑥, 𝑦) , 𝑞(𝑥, 𝑓𝑦) , 𝑞(𝑓𝑥, 𝑦)}   𝑖𝑓 𝑥 ≤ 𝑦                              ….(3.4.2) 

             Suppose  there exists  x0 ∈ X such that x0 ≥ f x0.  Then  f  has a fixed point in  X. 

Moreover and  if  f z = z, then q(z,z) = 0. 

The following theorem which is an analogue of theorem 3.2, for decreasing functions can be 

easily established. 

Theorem 3.5 : Let (X , ≤) be a partially ordered set and (𝑋, 𝑑) be a complete cone metric 

space. Also, let q be a lattice ordered c-distance on X  and f  : X → X be continuous non 
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decreasing mapping with respect to ≤ . Suppose  𝜆 ∈ [ 0, ½ ) and q satisfies the following 

conditions :  

(i) x ≤ y ≤ z implies q(𝑦, 𝑥)  ≤ 𝑞(𝑧, 𝑥) and q(𝑧, 𝑦)  ≤ 𝑞(𝑧, 𝑥) ∀𝑥, 𝑦, 𝑧 ∈ X                 …(3.5.1) 

(ii)𝑞(𝑓𝑦, 𝑓𝑥)  ≤  𝜆 max{𝑞(𝑦, 𝑥) , 𝑞(𝑓𝑦, 𝑥) , 𝑞(𝑦, 𝑓𝑥)}   𝑖𝑓 𝑥 ≤ 𝑦                              ….(3.5.2) 

            Suppose  there exists  x0 ∈ X such that x0  ≥  f x0. Then f  has a fixed point in  X. 

Moreover,  if  f z = z, then q(z,z) = 0. 

 Now we prove an improved version of theorem 2.16 

Theorem 3.6 : Let (X,≤) be a partially ordered set and (X,d) be a complete cone metric space. 

Also, let q be a c-distance on X  and  f : X → X be a continuous and non decreasing mapping 

with respect to ≤. Suppose 𝑥0 ∈ 𝑋 such that  𝑥0 ≤ 𝑓𝑥0 . Write 𝑥𝑛 = 𝑓n𝑥0 , 𝑛 =

0,1,2, …  Suppose   there exist  α,β,γ  with  𝛼 + 2𝛽 + 2𝛾 < 1 (non negative constants)  such 

that  q(𝑥𝑛+1 , 𝑥𝑚+1)  ≤ 𝛼𝑞(𝑥𝑛 , 𝑥𝑚) + 𝛽𝑞(𝑥𝑛, 𝑥𝑚+1) + 𝛾𝑞(𝑥𝑚, 𝑥𝑛+1)                       …(3.6.1) 

q(𝑥𝑚+1 , 𝑥𝑛+1)  ≤ 𝛼𝑞(𝑥𝑚 , 𝑥𝑛) + 𝛽𝑞(𝑥𝑚+1, 𝑥𝑛) + 𝛾𝑞(𝑥𝑛+1, 𝑥𝑚)                                …(3.6.2) 

 for n = 0,1,2,…  and m > n.  

Then {𝑥𝑛} is a Cauchy sequence with limit  z (say)  and  z is a fixed point of  f.   

Moreover, if   fz = z, then  q(z,z) = 0. 

Proof : Write x n = f x n-1 , n = 1,2,3,… 

If  xn = xn+1 for some n, then xn = xn+1 = f xn  so that  xn is a fixed point of f  .Now,  

suppose that  fx0 ≠ x0. Since  f  is non decreasing with respect to ≤ and x0 ≤ fx0,  

we get  f x 0 ≤  f 2 x 0 ⟹ x 1 ≤ x 2          

In a similar way we can show that x n  ≤  x n+1 ∀ n = 0,1,2,… 

Here x n = f x n-1 = f n x 0 

Now, let xn = xn and xm = x n+1 in (3.6.1), we have 

 q(𝑥𝑛+1 , 𝑥𝑛+2)  = q(𝑓𝑥𝑛 , 𝑓𝑥𝑛+1) 
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≤ 𝛼𝑞(𝑥𝑛 , 𝑥𝑛+1) + 𝛽𝑞(𝑥𝑛, 𝑥𝑛+2) + 𝛾𝑞(𝑥𝑛+1, 𝑥𝑛+1)        

≤  𝛼𝑞(𝑥𝑛 , 𝑥𝑛+1) + 𝛽{𝑞(𝑥𝑛, 𝑥𝑛+1) + 𝑞(𝑥𝑛+1, 𝑥𝑛+2)} + 

                                         𝛾{𝑞(𝑥𝑛+1, 𝑥𝑛) + 𝑞(𝑥𝑛, 𝑥𝑛+1)}   

= (𝛼 + 𝛽 + 𝛾) 𝑞(𝑥𝑛, 𝑥𝑛+1)  + 𝛽 𝑞(𝑥𝑛+1, 𝑥𝑛+2) + 𝛾 𝑞(𝑥𝑛+1, 𝑥𝑛) 

∴ q(𝑥𝑛+1 , 𝑥𝑛+2)  ≤ (𝛼 + 𝛽 + 𝛾) 𝑞(𝑥𝑛, 𝑥𝑛+1) + 𝛽 𝑞(𝑥𝑛+1, 𝑥𝑛+2) +  𝛾 𝑞(𝑥𝑛+1, 𝑥𝑛)    …(3.6.3) 

Now  q(𝑥𝑛+2 , 𝑥𝑛+1)   

= q(𝑓𝑥𝑛+1 , 𝑓𝑥𝑛) 

≤ 𝛼𝑞(𝑥𝑛+1 , 𝑥𝑛) + 𝛽𝑞(𝑥𝑛+2, 𝑥𝑛) + 𝛾𝑞(𝑥𝑛+1, 𝑥𝑛+1)        ( from (3.6.2))  

≤  𝛼𝑞(𝑥𝑛+1 , 𝑥𝑛) + 𝛽{𝑞(𝑥𝑛+2, 𝑥𝑛+1) + 𝑞(𝑥𝑛+1, 𝑥𝑛)} + 

                                         𝛾{𝑞(𝑥𝑛+1, 𝑥𝑛) + 𝑞(𝑥𝑛, 𝑥𝑛+1)}   

= (𝛼 + 𝛽 + 𝛾) 𝑞(𝑥𝑛+1, 𝑥𝑛)  + 𝛽 𝑞(𝑥𝑛+2, 𝑥𝑛+1) + 𝛾 𝑞(𝑥𝑛, 𝑥𝑛+1) 

∴  q(𝑥𝑛+2 , 𝑥𝑛+1)  ≤ (𝛼 + 𝛽 + 𝛾) 𝑞(𝑥𝑛+1, 𝑥𝑛)  + 𝛽 𝑞(𝑥𝑛+2, 𝑥𝑛+1) +  𝛾 𝑞(𝑥𝑛, 𝑥𝑛+1)  ...(3.6.4) 

Combining  (3.6.3) and (3.6.4) we get  

q(𝑥𝑛+1 , 𝑥𝑛+2) + q(𝑥𝑛+2 , 𝑥𝑛+1) ≤ (𝛼 + 𝛽 + 𝛾){𝑞(𝑥𝑛, 𝑥𝑛+1) + 𝑞(𝑥𝑛+1, 𝑥𝑛)}  

+𝛽 {𝑞(𝑥𝑛+1, 𝑥𝑛+2) + 𝑞(𝑥𝑛+2, 𝑥𝑛+1) +  𝛾{ 𝑞(𝑥𝑛+1, 𝑥𝑛) + 𝑞(𝑥𝑛, 𝑥𝑛+1)} 

⟹ λn ≤ (𝛼 + 𝛽 + 𝛾) λn-1 + 𝛽 λn + 𝛾 λn-1   where 

                  λn  = q(𝑥𝑛+1 , 𝑥𝑛+2) + q(𝑥𝑛+2 , 𝑥𝑛+1) 

⟹       λn  ≤ ( 
𝛼+𝛽+2𝛾

1−𝛽
 ) λn-1              

∴           λn   ≤  𝜇  λn-1  , n = 1,2,3,…        where 𝜇 =  
𝛼+2𝛽+2𝛾

1−𝛽
  < 1 

∴ By Lemma 2.11, { 𝑥𝑛 } is a Cauchy sequence in X. Since X is complete, there  

exists  a point z ∈ X such that  𝑥𝑛 → z as n →  ∞ . Continuity of  f  implies that  

𝑥𝑛+1 = 𝑓𝑥𝑛 → f z as n →  ∞ so that  fz = z. Thus, z is a fixed point of  f. 
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Since  fz = z ,  𝑞 (𝑧, 𝑧)   = 𝑞 (𝑓𝑧, 𝑓𝑧)    

                                    ≤ 𝛼𝑞(𝑧, 𝑧) + 𝛽𝑞(𝑧, 𝑧) + 𝛾𝑞(𝑧, 𝑧) 

                                      =  (𝛼 + 𝛽 + 𝛾) 𝑞(𝑧, 𝑧) 

                                      <  𝑞(𝑧, 𝑧) ( 𝛼 + 𝛽 + 𝛾 <  𝛼 + 2𝛽 + 2𝛾 < 1 ) 

                   ⟹  𝑞 (𝑧, 𝑧) = 0. 

Now we show that theorem 2.16 is a simple consequence of theorem 3.6. 

Corollary 3.7 : ( H. Rahimi  , G. Soleimani Rad [22], Theorem 3.1 ) 

                     Let (X,≤) be a partially ordered set and (X,d) be a complete cone  metric space. 

Also, let q be a c-distance on X and  f : X → X be a continuous and non decreasing mapping 

with respect to ≤. Suppose that there exist mappings  α,β,γ : X → [0,1) such that the following 

four conditions hold:  

(i) α(fx) ≤ α(x), β(fx) ≤ β(x) and γ(fx) ≤ γ(x) for all x ∈ X; 

 (ii) (α + 2β + 2γ)(x) < 1 for all x ∈ X;  

(iii) for all x,y ∈ X with x ≤ y, q(fx,fy) ⪯ α(x)q(x,y) + β(x)q(x,fy) + γ(x)q(y,fx);  

(iv) for all x,y ∈ X with x ≤ y, q(fy,fx) ⪯ α(x)q(y,x) + β(x)q(fy,x) + γ(x)q(fx,y). 

 Suppose  there exists  x0 ∈ X such that x0 ≤ fx0.  Then f  has a fixed point in X.  

Moreover, if   fz = z, then q(z,z) = 0. 

Proof : Let 𝛼 = 𝛼(𝑥0) , 𝛽 = 𝛽(𝑥0), 𝛾 = 𝛾(𝑥0) 

Then take  x = xn ,  y = xm   in Theorem 3.6 we get 

q(𝑥𝑛+1 , 𝑥𝑚+1)  

= q(𝑓𝑥𝑛 , 𝑓𝑥𝑚) 

≤ 𝛼(𝑥𝑛)𝑞(𝑥𝑛 , 𝑥𝑚) + 𝛽(𝑥𝑛)𝑞(𝑥𝑛, 𝑓𝑥𝑚) + 𝛾(𝑥𝑛)𝑞(𝑥𝑚, 𝑓𝑥𝑛)       

=   𝛼(𝑥𝑛 )𝑞(𝑥𝑛 , 𝑥𝑚) + 𝛽(𝑥𝑛 )𝑞(𝑥𝑛, 𝑥𝑚+1) + 𝛾(𝑥𝑛 )𝑞(𝑥𝑚, 𝑥𝑛+1) 
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≤ 𝛼(𝑥0 )𝑞(𝑥𝑛 , 𝑥𝑚) + 𝛽(𝑥0 )𝑞(𝑥𝑛, 𝑥𝑚+1) + 𝛾(𝑥0 )𝑞(𝑥𝑚, 𝑥𝑛+1)                                                                                                

                                                                     ( ∵ 𝛼(𝑥n)  ≤  𝛼(𝑥0)  for n = 1,2,3,…) 

    =𝛼 𝑞(𝑥𝑛 , 𝑥𝑚) + 𝛽 𝑞(𝑥𝑛, 𝑥𝑚+1) + 𝛾 𝑞(𝑥𝑚, 𝑥𝑛+1)                                                  …(3.7.1) 

          where  𝛼 = 𝛼(𝑥0) , 𝛽 = 𝛽(𝑥0)  and  𝛾 = 𝛾(𝑥0) 

 Similarly we get    q(𝑥𝑚+1 , 𝑥𝑛+1) 

 ≤  𝛼 𝑞(𝑥𝑚 , 𝑥𝑛) + 𝛽 𝑞(𝑥𝑚+1, 𝑥𝑛) +   𝛾 𝑞(𝑥𝑛+1, 𝑥𝑚)                                                         …(3.7.2) 

Combining  (3.7.1) and (3.7.2)  follows that the hypothesis of Theorem 3.6 is satisfied. Hence 

from theorem 3.6 the result follows. 

The following theorem establishes a condition for the uniqueness of the fixed point. 

Theorem 3.8 : Under the hypothesis of  Corollary 3.7 , no two  fixed points are comparable. 

Proof :  Suppose z and z′ are two comparable fixed points of  f  so that  fz = z  and   fz' = z' 

We may suppose without loss of generality that z ≤ z' 

 Now         𝑞 (𝑧, 𝑧′)    = 𝑞 (𝑓𝑧, 𝑓𝑧′)    

≤ 𝛼(𝑧)𝑞(𝑧, 𝑧′) + 𝛽(𝑧)𝑞(𝑧, 𝑓𝑧′) + 𝛾(𝑧)𝑞(𝑧′, 𝑓𝑧) 

= 𝛼 𝑞(𝑧, 𝑧′) + 𝛽 𝑞(𝑧, 𝑧′) + 𝛾 𝑞(𝑧′, 𝑧)  where 𝛼 =  𝛼( 𝑧 ), 𝛽 = 𝛽 ( 𝑧 ), 𝛾 =  𝛾 ( 𝑧 ) 

= (𝛼 + 𝛽) 𝑞(𝑧, 𝑧′) + 𝛾 𝑞(𝑧′, 𝑧) 

∴  𝑞 (𝑧, 𝑧′)   ≤ ( 
𝛾

1−𝛼−𝛽
 ) 𝑞(𝑧′, 𝑧)                                                                                    …(3.8.1) 

Again  𝑞(𝑧′, 𝑧) = 𝑞 (𝑓𝑧′, 𝑓𝑧)    

≤ 𝛼(𝑧)𝑞(𝑧′, 𝑧) + 𝛽(𝑧)𝑞(𝑓𝑧′, 𝑧) + 𝛾(𝑧)𝑞(𝑓𝑧, 𝑧′) 

= 𝛼 𝑞(𝑧′, 𝑧) + 𝛽 𝑞(𝑧′, 𝑧) + 𝛾 𝑞(𝑧, 𝑧′) 

= (𝛼 + 𝛽) 𝑞(𝑧′, 𝑧) + 𝛾 𝑞(𝑧, 𝑧′) 

∴  𝑞 (𝑧′, 𝑧)   ≤ ( 
𝛾

1−𝛼−𝛽
 ) 𝑞(𝑧, 𝑧′)                                                                                    …(3.8.2) 
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From (3.8.1) and (3.8.2) 

𝑞 (𝑧, 𝑧′)   ≤ ( 
𝛾

1−𝛼−𝛽
 )2 𝑞(𝑧, 𝑧′)       

 𝑞 (𝑧, 𝑧′)  = 0          (∵    ( 
𝛾

1−𝛼−𝛽
 ) < 1 ) 

similarly     𝑞 (𝑧′, 𝑧)   =  0      

∴    𝑞 (𝑧, 𝑧′)  = 0  =   𝑞 (𝑧′, 𝑧)       

Hence  z = z' 

Hence  f  cannot have two comparable fixed points. 

Now the following theorem which differs from Theorem 2.16 in the conditions (2.16.3) and  

(2.16.4) compared to (3.9.3) and (3.9.4) (in the last terms) can be easily established. 

Theorem 3.9 : Let (X,≤) be a partially ordered set and (X,d) be a complete cone  metric space. 

Also, let q be a c-distance on X and  f : X → X be a continuous and non decreasing mapping 

with respect to ≤. Suppose that there exist mappings  α,β,γ : X → [0,1) such that the following 

four conditions hold:  

(i) α(fx) ≤ α(x), β(fx) ≤ β(x) and γ(fx) ≤ γ(x) for all x ∈ X                                            …(3.9.1) 

(ii) (α + 2β + 2γ)(x) < 1 for all x ∈ X                                                                            …(3.9.2) 

(iii) for all x, y ∈ X with x ≤ y, q(fx,fy) ⪯ α(x)q(x,y) + β(x)q(x,fy)  + γ(x)q(fx,y)          …(3.9.3)  

(iv) for all x,y ∈ X with x ≤ y, q(fy,fx) ⪯ α(x)q(y,x) + β(x)q(fy,x) +  γ(x)q(y,fx)            …(3.9.4) 

 If there exists  x0 ∈ X such that x0 ≤ fx0, then f  has a fixed point and no two fixed points are  

 comparable.  Moreover, if   fz = z, then q(z,z) = 0. 
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CHAPTER 3 

Fixed Point Theorems for a Pair of Self Maps 

 in Ordered Cone Metric Spaces Under Lattice Ordered c-Distance 

1 Introduction 

                       Huang and Zhang [13]  introduced the concept of the cone metric space, replacing 

the set of real numbers by an ordered Banach space, and they showed some fixed point theorems 

of contractive type mappings on cone metric spaces. Then, several fixed and common fixed point 

results in cone metric spaces were introduced in [2, 3, 9, 15, 24] and the references contained 

therein. The Banach contraction principle is the most celebrated fixed point theorem [6]. 

Afterward, some various definitions of contractive mappings were introduced by other 

researchers and several fixed and common fixed point theorems were considered in [7, 10, 17, 

19, 25].  Also, the existence of fixed and common fixed points in partially ordered cone metric 

spaces was studied in [4, 5, 28]. In 1996, Kada et al. [18] defined the concept of w-distance in 

complete metric space and   proved some fixed point theorems in complete metric spaces (see [1, 

20, 21, 23]). Also Saadati et al. [26] introduced a probabilistic version of the w-distance of  Kada 

et al. in a Menger probabilistic metric space. Cho et al. [8], and Wang and Guo [30] defined a 

concept of the c-distance in a cone metric space, which is a cone version of the w-distance of  

Kada et al. and proved some fixed point theorems in ordered cone metric spaces. Sintunavarat et 

al. [29] generalized  the Banach contraction theorem on c-distance of Cho et al. [8]. Also, 

Dordevi´c et al. in [12] proved some fixed point and common fixed point theorems under c-

distance for contractive mappings in tvs-cone metric spaces.  H. Rahimi, G. Soleimani Rad [ 22 ] 

extended  the Banach contraction principle [6] and Chatterjea contraction theorem [7] on c-

distance of Cho et al. [8], and  proved some fixed point and common fixed point  theorems in 

ordered cone metric spaces. Sastry et al. [27] extended  the results of  [22] . Also they introduced 

the notion of lattice ordered c-distance and proved some fixed point theorems under a lattice 

ordered c-distance in ordered cone metric spaces, for a single function. 

                      In this paper we extend the results of  H. Rahimi & G. Soleimani Rad [22] and  

Sastry et al. [ 27] on common fixed points for a pair of self maps. 
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2 Preliminaries 

First let us start with some basic definitions 

Definition 2.1: ([11, 13])  

                   Let E be a real Banach space and 0 denote the zero element in E. A subset P of E is 

said to be a cone if  

(a) P is closed, non-empty and P  ≠ {0};  

(b) a,b ∈ R,  a,b ≥ 0, x,y ∈ P imply that ax + by ∈ P; where  R is the real number  system 

(c) if  x ∈ P and −x ∈ P, then x = 0.  

                Given a cone P ⊂ E, we define  a  partial  ordering  ≤  with  respect  to  P  by  x ≤ y ⇔  

y − x ∈ P.  We shall write  x < y  if  x ≤  y  and  x  ≠ y.  Also, we write  x ≪ y  if and only if  y − x 

∈ int P  (where int P is interior of P).  If int P ≠ ∅, the  cone  P  is  called  solid. The cone P is 

called normal if there is a number k > 0 such that for all x, y ∈ E, 0 ≤ x ≤ y ⇒ ∥x∥ ≤  k∥y∥. The 

least positive number satisfying the above is called the normal constant of P. 

Definition 2.2: ([13])  

                   Let X be a nonempty set and E be a real Banach space equipped with the partial 

ordering ≤ with respect to the cone P ⊂ E. Suppose that the mapping  d : X × X → E satisfies:  

(d1) 0 ≤ d(x, y) for all  x, y ∈ X and d(x, y) = 0 if and only if x = y;  

(d2) d(x, y) = d(y, x) for all x, y ∈ X;  

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.  

    Then, d is called a cone metric on X and (X,d) is called a cone metric space. 

Definition 2.3: ([13])  

                    Let (X,d) be a cone metric space, {xn} a sequence in X and x ∈ X. (i) {xn} converges 

to x if for every c ∈ E with 0 ≪ c there exists  n0 ∈ N such that  d(xn, x) ≪ c for all n > n0, and we 

write lim n→∞  d(xn, x) = 0. 



46 
 

 (ii) {xn} is called a Cauchy sequence if for every c ∈ E with 0 ≪ c there exists  n0 ∈ N such that 

d(xn, xm) ≪ c for all m,n > n0, and  we write lim n,m→∞d(xn, xm) = 0.  

(iii)  If every Cauchy sequence in X is convergent, then X is called a complete cone metric space. 

Lemma 2.4: ([13, 24]) 

              Let (X,d) be a cone metric space and P be a normal cone with normal constant k. Also, 

let {xn} and {yn} be sequences in X and x, y ∈ X. Then the following hold:  

(c1) {xn} converges to x if and only if d(xn, x) → 0 as n →∞. 

(c2) If {xn} converges to x and {xn} converges to y, then x = y.  

(c3) If{xn}converges to x, then{xn}is a Cauchy sequence.  

(c4) If xn → x and yn → y as n → ∞, then d(xn, yn) → d(x, y) as n →∞.  

(c5) {xn} is a Cauchy sequence if and only if d(xn, xm) → 0 as n,m →∞.  

Lemma 2.5: ([4, 14])  Let E be a real Banach space with a cone P in E. Then, for all u,v,w,c 

∈ E, the following hold:  

 (p1) If u ≤ v and v ≪ w, then u ≪ w. 

 (p2) If 0 ≤ u ≪ c for each c ∈ int P, then u = 0.  

 (p3) If u ≤ λu where u ∈ P and 0 < λ < 1, then u = 0.  

 (p4) Let xn → 0 in E, 0 ≤ xn and 0 ≪ c. Then there exists positive integer n0  such that xn ≪ c     

   for each n > n0.  

 (p5) If 0 ≤ u ≤ v and k is a nonnegative real number, then 0 ≤ ku ≤ kv. 

 (p6) If 0 ≤ un ≤ vn for all n ∈ N and un → u, vn → v as n →∞, then 0 ≤ u ≤ v.  

Definition 2.6: ([8, 30])  

               Let (X,d) be a cone metric space. A function q : X×X → E is called a  

c-distance on X if the following are satisfied: 
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 (q1) 0 ≤ q(x, y) for all x, y ∈ X; 

 (q2) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X;  

 (q3) for all n ≥ 1 and x ∈ X, if q(x, yn) ≤  u for some u , then q(x, y) ≤ u whenever  {yn} is a 

sequence in X converging to a point y ∈ X;  

(q4) for all c ∈ E with 0 ≪ c, there exists e ∈ E with 0 ≪ e such that q(z, x) ≪ e  and q(z, y) ≪ e 

imply d(x, y) ≪ c.  

Remark 2.7:  ([8, 30])    Each w-distance q in a metric space (X,d) is a c-distance (with E = 

R+ and P = [0,∞)). But the converse does not hold. Therefore, the c-distance is a generalization 

of w-distance. 

Examples 2.8: ([8, 29, 30])  

(1) Let (X,d) be a cone metric space and P be a normal cone. Put q(x, y) = d(x, y) for all x, y ∈ X. 

Then q is a c-distance.  

(2) Let E = R, X = [0,∞) and P = {x ∈ E : x ≥ 0}. Define a mapping d : X ×X → E by  

d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a cone metric space. Define a mapping  

q : X ×X → E  by q(x, y) = y for all x, y ∈ X. Then q is a c distance.  

(3) Let E = C1 R [0,1] with the norm ∥x∥= ∥x∥∞+∥x′∥∞ and consider the cone 

 P = {x ∈ E : x(t) ≥ 0 on [0,1]}. Also, let X = [0,∞) and define a mapping 

 d : X×X → E by d(x, y) = |x−y|ψ for all x, y ∈ X, where ψ : [0,1] → R such that  

ψ(t) = 2t. Then (X,d) is a cone metric space. Define a mapping q : X × X → E by  

q(x, y) = (x + y)ψ for all x, y ∈ X. Then q is c-distance. 

 (4) Let (X,d) be a cone metric space and P be a normal cone. Put q(x, y) = d(w, y)  

 for all x, y ∈ X, where w ∈ X is a fixed point. Then q is a c-distance. 

Remark 2.9:  ([8, 29, 30])   From Examples 2.8 (1,2,4), we have three important     

results   

(i)  Each cone metric d on X with a normal cone is a c-distance q on X.  
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(ii) For c-distance q, q(x, y) = 0 is not necessarily equivalent to x = y for all  x,y ∈ X. 

(iii) For c-distance q, q(x,y) = q(y,x) does not necessarily hold for all x,y ∈ X.  

Lemma 2.10: ([8, 29, 30])  

              Let (X,d) be a cone metric space and let q be a c-distance on X. Also, let  

{xn} and {yn} be sequences in X and x, y, z ∈ X. Suppose that{un}and{vn}are two   

 sequences in P converging to 0. Then the following hold:  

(qp1) If q(xn, y) ≤ un and q(xn, z) ≤ vn for n ∈ N, then y = z.  

          Specifically,  if q(x, y) = 0 and q(x, z) = 0, then y = z.  

(qp2) If q(xn, yn) ≤ un and q(xn, z) ≤ vn for n ∈ N, then {yn} converges to z.  

(qp3) If q(xn, xm) ≤ un for m > n, then {xn} is a Cauchy sequence in X. 

 (qp4) If q(y, xn) ≤ un for n ∈ N, then {xn} is a Cauchy sequence in X. 

We use the following special case of (qp3) in Section 3 

Lemma 2.11: [27] 

In addition to the hypothesis of  Lemma 2.10, assume the following : 

           Let 𝑧0 ∈ P , 0 ≤ 𝜇 < 1 and  q ( 𝑥𝑛 , 𝑥𝑚 ) ≤  𝜇𝑛 𝑧0  ∀  𝑚 ≥ 𝑛.  

Then { 𝑥𝑛 } is a Cauchy sequence. ( ∵ 𝑢𝑛 = 𝜇𝑛 𝑧0 ⟶ 0 as n  ⟶ ∞ ) 

Definition 2.12: ([4, 8])  

                     Let ( X, ≤) be a partially ordered set. Two mappings f, g : X → X are said to be  

weakly increasing if f x ≤ g f x and g x ≤ f g x hold for all x ∈ X. 

Definition 2.13:  ([9]) 

                    A lattice is a partially ordered set  S in which any two elements a,b ∈ S have the  
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supremum (a ∪ b) and the infimum (a ∩ b). Sometimes we write max { a,b } for (a ∪ b) and 

min { a,b } for  (a ∩ b). 

Definition 2.14:  ([27) 

                    Suppose (X,d) is a cone metric space and q : X × X → E is a c-distance.  Clearly, the 

image  q ( X × X ) of  X × X under q is a subset of P. If the image  

q ( X × X ) is a lattice in P, we say that q is a lattice ordered c-distance on X. 

 H. Rahimi,  G. Soleimani Rad [ 22 ] proved following theorem.  

Theorem 2.15 : ( [22], Theorem 3.1 ) 

                 Let (X, ≤) be a partially ordered set and (X,d) be a complete cone  metric space. Also, 

let q be a c-distance on X and  f : X → X be a continuous and non decreasing mapping with 

respect to ≤. Suppose that there exist mappings  α,β,γ : X → [0,1) such that the following four 

conditions hold:  

(i) α(fx) ≤ α(x), β(fx) ≤ β(x) and γ(fx) ≤ γ(x) for all x ∈ X; 

 (ii) (α + 2β + 2γ)(x) < 1 for all x ∈ X;  

(iii) for all x,y ∈ X with x ≤ y, q(fx,fy) ≤ α(x)q(x,y) + β(x)q(x,fy) + γ(x)q(y,fx);  

(iv) for all x,y ∈ X with x ≤ y, q(fy,fx) ≤ α(x)q(y,x) + β(x)q(fy,x) + γ(x)q(fx,y). 

 If there exists  x0 ∈ X such that x0 ≤ fx0, then f  has a fixed point. Moreover, if    

   fz = z, then q(z,z) = 0. 

Note : In the above theorem 𝛼 , 𝛽 , 𝛾  are functions of  x. In section 3, we take 𝛼 , 𝛽 , 𝛾 to be 

constants so that above (i) becomes obvious. 

           By introducing lattice order on the image of q, the following theorem is proved in [27]. 

Theorem 2.16 : (Sastry etal. [27], Theorem 3.3) 

Let (X , ≤) be a partially ordered set and (𝑋, 𝑑) be a complete cone metric space. Also, let q be a 

lattice ordered c-distance on X  and f  : X → X be continuous non decreasing mapping with 

respect to ≤ . Suppose  𝜆 ∈ [ 0, ½ ) and q satisfies the following conditions :  
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(i)  x ≤ y ≤ z   implies   

                 q(𝑥, 𝑦)  ≤ 𝑞(𝑥, 𝑧) ;  q(𝑦, 𝑥)  ≤ 𝑞(𝑧, 𝑥)                                             …(3.3.1)                                                    

                  q(𝑦, 𝑧)  ≤ 𝑞(𝑥, 𝑧)  ;  q(𝑧, 𝑦)  ≤ 𝑞(𝑧, 𝑥)     ∀  𝑥, 𝑦, 𝑧 ∈ X            … (3.3.2) 

 (ii) 𝑞(𝑓𝑥, 𝑓𝑦)  ≤  𝜆 𝑚𝑎𝑥{𝑞(𝑥, 𝑦) , 𝑞(𝑥, 𝑓𝑦) , 𝑞(𝑦, 𝑓𝑥)}   𝑖𝑓 𝑥 ≤ 𝑦           … (3.3.3)                               

(iii) 𝑞(𝑓𝑦, 𝑓𝑥)  ≤  𝜆 𝑚𝑎𝑥{𝑞(𝑦, 𝑥) , 𝑞(𝑓𝑦, 𝑥) , 𝑞(𝑓𝑥, 𝑦)}   𝑖𝑓 𝑥 ≤ 𝑦            ...(3.3.4)                              

                    Suppose  there exists  x0 ∈ X such that x0 ≤ f x0. Then f  has a fixed  point in  X  and  

no two fixed points are comparable. Moreover,  if  f z = z, then q(z,z) = 0. 

The following theorem is an extension of Theorem 2.15( [22], Theorem 3.1 ) to a  

pair of functions. 

Theorem 2.17 : ( Theorem 3.3 , [22] ) 

Let (X, ≤) be a partially ordered set and (X,d) be a complete cone metric space. Also, let q 

be a c-distance on X and 𝑓, 𝑔 : X → X be two continuous and weakly increasing mappings 

with respect to ≤. Suppose that there exist mappings α,β,γ : X → [0,1) such that the 

following  five  conditions hold :  

(t 1) α(𝑓𝑥) ≤ α(𝑥), β(𝑓𝑥) ≤ β(𝑥) and γ(𝑓𝑥) ≤ γ(𝑥) for all 𝑥 ∈ X 

(t 2) α(𝑔𝑥) ≤ α(𝑥), β(𝑔𝑥) ≤ β(𝑥) and γ(𝑔𝑥) ≤ γ(𝑥) for all 𝑥 ∈ X  

(t 3) (α + 2β + 2γ)(x) < 1 for all 𝑥 ∈ X;  

(t 4) for all comparable 𝑥, 𝑦 ∈ X,  

             𝑞( 𝑓𝑥, 𝑔𝑦 )  ≤  𝛼(𝑥) 𝑞(𝑥, 𝑦) +  𝛽(𝑥) 𝑞(𝑥, 𝑔𝑦) +  𝛾(𝑥) 𝑞(𝑦, 𝑓𝑥) 

 (t 5) for all comparable x,y ∈ X,  

             𝑞( 𝑔𝑦, 𝑓𝑥 )  ≤  𝛼(𝑥) 𝑞(𝑦, 𝑥) +  𝛽(𝑥) 𝑞(𝑔𝑦, 𝑥) +  𝛾(𝑥) 𝑞(𝑓𝑥, 𝑦)  

Then  𝑓 and 𝑔 have a common fixed point. Moreover, if 𝑓𝑧 = 𝑔𝑧 = 𝑧, 

 then  𝑞(𝑧, 𝑧) = 0. 



51 
 

Note : In this theorem 𝛼 , 𝛽 , 𝛾  are functions of  x. In section 3, we take 𝛼 , 𝛽 , 𝛾 to be constants 

so that (t 1) and  ( t 2 ) become obvious. 

3 Main results 

                In this section , we extend the results  of  H. Rahimi,  G. Soleimani [ 22 ] and  

Sastry et al [27 ],  taking q to be a lattice ordered c-distance.  We also establish  

some more common fixed point theorems under lattice ordered c-distance in ordered cone  

metric spaces,  for a pair of self maps. 

First we are proving the following Lemma : 

Lemma 3.1: If  q ( 𝑥𝑛 , 𝑥𝑛+1 ) ≤ 𝜇 q ( 𝑥𝑛−1 , 𝑥𝑛 )  ∀ 𝑛  where 0 ≤  𝜇 < 1 then {xn} is a 

Cauchy sequence in X. 

Proof : We observe that q ( 𝑥𝑛 , 𝑥𝑛+1 ) ≤ 𝜇𝑛  q ( 𝑥0 , 𝑥1 )  for n = 1,2,… 

Now let m > n, 

q ( 𝑥𝑛 , 𝑥𝑚 )  ≤  q ( 𝑥𝑛 , 𝑥𝑛+1 ) +  q ( 𝑥𝑛+1 , 𝑥𝑛+2 ) +  … +  q ( 𝑥𝑚−1 , 𝑥𝑚 )   

                     ≤  (  𝜇𝑛 + 𝜇𝑛+1 + … + 𝜇𝑚−1 ) q ( 𝑥0 , 𝑥1 )   

                     ≤   𝜇𝑛 (
1

1−𝜇
) q ( 𝑥0 , 𝑥1 )   

                     ≤   𝜇𝑛 𝑧0  where 𝑧0 = ( 
1

1−𝜇 
) q ( 𝑥0 , 𝑥1 )   

  Hence by Lemma 2.11, {xn} is a Cauchy sequence in X. 

              Now we state and prove two of our main results with the underlying space X having a 

lattice ordered c-distance in ordered cone metric spaces, for a pair of self maps. This becomes 

necessary since we consider maximum of three terms in the control function which we cannot do 

if the c-distance is not lattice ordered. 

Theorem 3.2 :   Let (X , ≤) be a partially ordered set and (X, d) be a complete cone metric 

space. Also, let q be a lattice ordered c-distance on X and f, g : X → X be two continuous and 
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weakly increasing mappings with respect to ≤ . Suppose  𝜆 ∈ [ 0, ½ ) and q satisfies the 

following conditions :  

(i)  x ≤ y ≤ z   implies  

      q(𝑥, 𝑦)  ≤ 𝑞(𝑥, 𝑧) ;  q(𝑦, 𝑥)  ≤ 𝑞(𝑧, 𝑥)                                                          …(3.2.1) 

      q(𝑦, 𝑧)  ≤ 𝑞(𝑥, 𝑧)  ;  q(𝑧, 𝑦)  ≤ 𝑞(𝑧, 𝑥)  ∀  𝑥, 𝑦, 𝑧 ∈ X                           … (3.2.2) 

 (ii) 𝑞(𝑓𝑥, 𝑔𝑦)  ≤  𝜆 max{𝑞(𝑥, 𝑦) , 𝑞(𝑥, 𝑔𝑦) , 𝑞(𝑦, 𝑓𝑥)}   𝑖𝑓 𝑥 ≤ 𝑦           … (3.2.3) 

(iii) 𝑞(𝑔𝑥, 𝑓𝑦)  ≤  𝜆 max{𝑞(𝑥, 𝑦) , 𝑞(𝑥, 𝑓𝑦) , 𝑞(𝑦, 𝑔𝑥)}   𝑖𝑓 𝑥 ≤ 𝑦            ... (3.2.4) 

                 Suppose there exists  x0 ∈ X such that x0 ≤ f x0                          … (3.2.5) 

Then f and g have a common fixed point in X.  Moreover, if  f z =gz = z, then  

q(z,z) = 0. 

Proof : Let x0 be as in (3.2.5). We construct the sequence {xn} in X as follows:  

      x2n+1 = fx2n , x2n+2 = gx2n+1    ∀  n = 0,1,2,… 

             Since f and g are weakly increasing mappings, such that  

x1 = f x0 ≤ g f x0 = g x1 = x2,  x2 = g x1 ≤ f g x1 = f x2 = x3.  

If we continue in this manner, then there exist x2n+1 ∈ X 

 x2n+1 = f x2n ≤  g f x2n = g x2n+1 = x2n+2 and x2n+2 ∈ X  

x2n+2 = g x2n+1 ≤   f g x2n+1 = f x2n+2 = x2n+3 for n = 0,1,2,… 

Thus,  x1 ≤ x2 ≤···≤ xn ≤ xn+1 ≤ ··· for all n ≥ 1. 

That is {xn} is a non decreasing sequence. Since x2n ≤ x2n+1 for all  n  ≥  1 and by using (3.2.3)  

for x = x2n and y = x2n+1, we have 

q(x2n+1, x2n+2) = q( f x2n , g x2n+1 ) 

≤ λ max { 𝑞 (𝑥2𝑛, 𝑥2𝑛+1), 𝑞 (𝑥2𝑛, 𝑔𝑥2𝑛+1), 𝑞 (𝑥2𝑛+1, 𝑓𝑥2𝑛)}  

= λ max { 𝑞 (𝑥2𝑛, 𝑥2𝑛+1), 𝑞 (𝑥2𝑛, 𝑥2𝑛+2), 𝑞 (𝑥2𝑛+1, 𝑥2𝑛+1)}   
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=  λ  𝑞 (𝑥2𝑛, 𝑥2𝑛+2)   ( from  3.2.1,  𝑥2𝑛 ≤ 𝑥2𝑛+1  ≤  𝑥2𝑛+2  ) 

 ≤  λ { 𝑞 (𝑥2𝑛, 𝑥2𝑛+1) +  𝑞 (𝑥2𝑛+1, 𝑥2𝑛+2) }   

⟹ 𝑞 (𝑥2𝑛+1, 𝑥2𝑛+2)   ≤  ( 
𝜆

1−𝜆
 ) 𝑞 (𝑥2𝑛, 𝑥2𝑛+1)                                                             …(3.2.6) 

Similarly, using (3.2.4), we get  

    𝑞 (𝑥2𝑛, 𝑥2𝑛+1)    

=  𝑞 (𝑔𝑥2𝑛−1, 𝑓𝑥2𝑛) 

≤ λ max { 𝑞 (𝑥2𝑛−1, 𝑥2𝑛), 𝑞 (𝑥2𝑛−1, 𝑓𝑥2𝑛), 𝑞 (𝑥2𝑛, 𝑔𝑥2𝑛−1)}  ( ∵ by (3.2.4) ) 

=  λ max { 𝑞 (𝑥2𝑛−1, 𝑥2𝑛), 𝑞 (𝑥2𝑛−1, 𝑥2𝑛+1), 𝑞 (𝑥2𝑛, 𝑥2𝑛)}   

=  λ  𝑞 (𝑥2𝑛−1, 𝑥2𝑛+1)   ( from  (3.2.2) ) 

≤  λ { 𝑞 (𝑥2𝑛−1, 𝑥2𝑛) + 𝑞 (𝑥2𝑛, 𝑥2𝑛+1) }   

⟹ 𝑞 (𝑥2𝑛, 𝑥2𝑛+1)   ≤  ( 
𝜆

1−𝜆
 ) 𝑞 (𝑥2𝑛−1, 𝑥2𝑛)                                                                …(3.2.7) 

From (3.2.6) and (3.2.7) we get 

𝑞 (𝑥𝑛+1, 𝑥𝑛+2)   ≤  ( 
𝜆

1−𝜆
 ) 𝑞 (𝑥𝑛, 𝑥𝑛+1) 

∴ By induction ,  

         𝑞 (𝑥𝑛+1, 𝑥𝑛+2)   ≤  ( 
𝜆

1−𝜆
 )𝑛+1 𝑞 (𝑥0 , 𝑥1) , n = 0,1,2,… 

Now 
𝜆

1−𝜆
< 1  𝑠𝑖𝑛𝑐𝑒   0 ≤ λ < ½ 

∴  By taking   𝜇 =  
𝜆

1−𝜆
   and  𝑧0 = 𝑞 (𝑥0 , 𝑥1)  ∈ 𝑃, from Lemma 3.1, we get that  

{ 𝑥𝑛 } is a Cauchy sequence in X. Since X is complete, there exists  

a point z ∈ X such that  𝑥𝑛 → z as n →  ∞ .  

∴ By continuity of  f  and g we get   

𝑥𝑛+1 = 𝑓 𝑥𝑛 →  f z  and  𝑥𝑛+2 = 𝑔 𝑥𝑛+1 → g z as n →  ∞ . 
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Hence   f z = z and g z = z . Thus, z is a fixed point of f and g. 

Then       𝑞 (𝑧, 𝑧)   = 𝑞 (𝑓𝑧, 𝑔𝑧)    

                              ≤  λ max { 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑔𝑧), 𝑞 (𝑧, 𝑓𝑧)}    ( by (3.2.3) ) 

                               = λ max { 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑧), 𝑞 (𝑧, 𝑧)}   

                               =  λ 𝑞 (𝑧, 𝑧) 

          ⟹  𝑞 (𝑧, 𝑧) = 0 

The following theorem which is an analogue of theorem 3.2, for decreasing functions can be 

easily established. 

Theorem 3.3 :   Let (X , ≤) be a partially ordered set and (X, d) be a complete cone metric 

space. Also, let q be a lattice ordered c-distance on X and f, g : X → X be two continuous and 

weakly decreasing mappings with respect to ≤ . Suppose  𝜆 ∈ [ 0, ½ ) and q satisfies the 

following conditions :  

(i)  x ≤ y ≤ z   implies  

(a)  q(𝑥, 𝑦)  ≤ 𝑞(𝑥, 𝑧) ;  q(𝑦, 𝑥)  ≤ 𝑞(𝑧, 𝑥)                                                        …(3.3.1) 

(b) q(𝑦, 𝑧)  ≤ 𝑞(𝑥, 𝑧)  ;  q(𝑧, 𝑦)  ≤ 𝑞(𝑧, 𝑥)  ∀  𝑥, 𝑦, 𝑧 ∈ X                           … (3.3.2) 

 (ii) 𝑞(𝑓𝑥, 𝑔𝑦)  ≤  𝜆 max{𝑞(𝑥, 𝑦) , 𝑞(𝑥, 𝑔𝑦) , 𝑞(𝑓𝑥, 𝑦)}   𝑖𝑓 𝑥 ≤ 𝑦           … (3.3.3) 

(iii) 𝑞(𝑔𝑥, 𝑓𝑦)  ≤  𝜆 max{𝑞(𝑥, 𝑦) , 𝑞(𝑥, 𝑓𝑦) , 𝑞(𝑔𝑥, 𝑦)}   𝑖𝑓 𝑥 ≤ 𝑦            ... (3.3.4) 

                 Suppose there exists  x0 ∈ X such that x0 ≥ f x0                          … (3.3.5) 

Then f and g have a common fixed point in X.  Moreover, if  f z =gz = z, then  

q(z,z) = 0. 

Now we prove an improved version of theorem 2.17 

Theorem 3.4 : Let (X,≤) be a partially ordered set and (X,d) be a complete cone metric space. 

Also, let q be a c-distance on X and  f  , g : X → X be a continuous and  non decreasing 

mappings with respect to  ≤. Suppose there exists  x0 ∈ X such that  x0 ≤ f x0.  
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 Define a sequence {xn} by   x2n+1 = fx2n , x2n+2 = gx2n+1    ∀  n = 0,1,2,…              …(3.4.1) 

 Suppose there exist α, β, γ with  𝛼 + 2𝛽 + 2𝛾 < 1 (non negative constants)  

 such that  

q(𝑥2𝑛+1 , 𝑥2𝑚+2) ≤ 𝛼𝑞(𝑥2𝑛 , 𝑥2𝑚+1) + 𝛽𝑞(𝑥2𝑛, 𝑥2𝑚+2) + 𝛾𝑞(𝑥2𝑚+1, 𝑥2𝑛+1) ∀ m,n                                                                                                                                       

                                                                                                                                …(3.4.2) 

q(𝑥2𝑚+2 , 𝑥2𝑛+1) ≤ 𝛼𝑞(𝑥2𝑚+1 , 𝑥2𝑛) + 𝛽𝑞(𝑥2𝑚+2, 𝑥2𝑛) + 𝛾𝑞(𝑥2𝑛+1, 𝑥2𝑚+1) ∀ m,n    

                                                                                                                                 …(3.4.3) 

Then {𝑥𝑛} is a Cauchy sequence with limit  z (say) and z is a common fixed  point of  f  and g.  

Moreover, if   fz = z, then  q(z,z) = 0. 

Proof :  Since f and g are weakly increasing mappings, such that 

 x1 = f x0 ≤ g f x0 = g x1 = x2,  x2 = g x1 ≤ f g x1 = f x2 = x3.  

If we continue in this manner, then there exist x2n+1 ∈ X 

 x2n+1 = f x2n ≤  g f x2n = g x2n+1 = x2n+2 and x2n+2 ∈ X  

 x2n+2 = g x2n+1 ≤   f g x2n+1 = f x2n+2 = x2n+3 for n = 0,1,2,… 

Thus,  x1 ≤ x2 ≤···≤ xn ≤ xn+1 ≤ ··· for all n ≥ 1. 

That is {xn} is a non decreasing sequence. Since x2n ≤ x2n+1 for all n ≥ 1 and by  

Put m = n-1 in (3.4.2)  & (3.4.3) we get 

  q(𝑥2𝑛+1 , 𝑥2𝑛) 

≤ 𝛼𝑞(𝑥2𝑛 , 𝑥2𝑛−1) + 𝛽𝑞(𝑥2𝑛, 𝑥2𝑛) + 𝛾𝑞(𝑥2𝑛−1, 𝑥2𝑛+1)  

  ≤  𝛼𝑞(𝑥2𝑛 , 𝑥2𝑛−1) + 𝛽{𝑞(𝑥2𝑛, 𝑥2𝑛−1) + 𝑞(𝑥2𝑛−1, 𝑥2𝑛)} + 

                                         𝛾{𝑞(𝑥2𝑛−1, 𝑥2𝑛) + 𝑞(𝑥2𝑛, 𝑥2𝑛+1)}                           

∴ q(𝑥2𝑛+1 , 𝑥2𝑛)  ≤  𝛼𝑞(𝑥2𝑛 , 𝑥2𝑛−1) + 𝛽{𝑞(𝑥2𝑛, 𝑥2𝑛−1) + 𝑞(𝑥2𝑛−1, 𝑥2𝑛)} + 

                                         𝛾{𝑞(𝑥2𝑛−1, 𝑥2𝑛) + 𝑞(𝑥2𝑛, 𝑥2𝑛+1)}                                         … (3.4.4) 
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Similarly from (3.4.3) we get  

q(𝑥2𝑛 , 𝑥2𝑛+1)  ≤  𝛼𝑞(𝑥2𝑛−1 , 𝑥2𝑛) + 𝛽{𝑞(𝑥2𝑛, 𝑥2𝑛−1) + 𝑞(𝑥2𝑛−1, 𝑥2𝑛)} + 

                                         𝛾{𝑞(𝑥2𝑛+1, 𝑥2𝑛) + 𝑞(𝑥2𝑛, 𝑥2𝑛−1)}                                          …(3.4.5) 

Combining (3.4.4) and (3.4.5) we get  

q(𝑥2𝑛+1 , 𝑥2𝑛) +  q(𝑥2𝑛+2 , 𝑥2𝑛+1) 

≤ (𝛼 + 2𝛽 + 𝛾){𝑞(𝑥2𝑛, 𝑥2𝑛−1) +  𝑞(𝑥2𝑛−1, 𝑥2𝑛)} + 

   𝛾{ 𝑞(𝑥2𝑛+1, 𝑥2𝑛) +  𝑞(𝑥2𝑛, 𝑥2𝑛+1)} 

⟹ λ2n  ≤ (𝛼 + 2𝛽 + 𝛾) λ2n-1  + 𝛾 λ2n   where 

      λn  = q(𝑥𝑛 , 𝑥𝑛+1) + q(𝑥𝑛+1 , 𝑥𝑛) ⟹  λ2n  = q(𝑥2𝑛 , 𝑥2𝑛+1) + q(𝑥2𝑛+1 , 𝑥2𝑛) 

 ⟹       λ2n  ≤ ( 
𝛼+2𝛽+𝛾

1−𝛾
 ) λ2n-1             

∴           λ2n   ≤  𝜇  λ2n-1  , n = 1,2,3,…                                                                         …(3.4.6)         

           where 𝜇 =  max {  
𝛼+2𝛽+𝛾

1−𝛾
 , 

𝛼+𝛽+2𝛾

1−𝛽
 }  < 1  

Now put m = n in (3.4.2)  & (3.4.3) we get 

q(𝑥2𝑛+1 , 𝑥2𝑛+2) ≤ 𝛼𝑞(𝑥2𝑛 , 𝑥2𝑛+1) + 𝛽𝑞(𝑥2𝑛, 𝑥2𝑛+2) + 𝛾𝑞(𝑥2𝑛+1, 𝑥2𝑛+1) 

                             ≤ 𝛼𝑞(𝑥2𝑛 , 𝑥2𝑛+1) +  𝛽 { 𝑞(𝑥2𝑛, 𝑥2𝑛+1) + 𝑞(𝑥2𝑛+1, 𝑥2𝑛+2) } 

                                       + 𝛾 { 𝑞(𝑥2𝑛+1, 𝑥2𝑛) + 𝛾𝑞(𝑥2𝑛, 𝑥2𝑛+1)    

∴  q(𝑥2𝑛+1 , 𝑥2𝑛+2)  ≤ 𝛼𝑞(𝑥2𝑛 , 𝑥2𝑛+1) +  𝛽 { 𝑞(𝑥2𝑛, 𝑥2𝑛+1) + 𝑞(𝑥2𝑛+1, 𝑥2𝑛+2) } 

                                       + 𝛾 { 𝑞(𝑥2𝑛+1, 𝑥2𝑛) + 𝛾𝑞(𝑥2𝑛, 𝑥2𝑛+1)                                    …(3.4.7) 

Similarly from  (3.4.3) we get  

 q(𝑥2𝑛+2 , 𝑥2𝑛+1)  ≤ 𝛼𝑞(𝑥2𝑛+1 , 𝑥2𝑛) +  𝛽 { 𝑞(𝑥2𝑛+1, 𝑥2𝑛) + 𝑞(𝑥2𝑛+2, 𝑥2𝑛+1) } 

                                       + 𝛾 { 𝑞(𝑥2𝑛, 𝑥2𝑛+1) + 𝛾𝑞(𝑥2𝑛+1, 𝑥2𝑛)                                    …(3.4.8) 

Combining (3.4.7) and (3.4.8) we get  
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  q(𝑥2𝑛+1 , 𝑥2𝑛+2) +  q(𝑥2𝑛+2 , 𝑥2𝑛+1) 

 ≤  (𝛼 + 𝛽 + 2𝛾){𝑞(𝑥2𝑛, 𝑥2𝑛+1) +  𝑞(𝑥2𝑛+1, 𝑥2𝑛)} + 

   𝛽{ 𝑞(𝑥2𝑛+1, 𝑥2𝑛+2) +  𝑞(𝑥2𝑛+2, 𝑥2𝑛+1)} 

          λ2n +1  ≤ (𝛼 + 𝛽 + 2𝛾) λ2n  + 𝛽 λ2n +1   where 

   λn  = q(𝑥𝑛 , 𝑥𝑛+1) + q(𝑥𝑛+1 , 𝑥𝑛) ⟹  λ2n+1  = q(𝑥2𝑛+1 , 𝑥2𝑛+2) + q(𝑥2𝑛+2 , 𝑥2𝑛+1) 

 ⟹       λ2n+1  ≤ ( 
𝛼+𝛽+2𝛾

1−𝛽
 ) λ2n                                                                                                              

∴     λ2n+1   ≤  𝜇  λ2n  , n = 0,1,2,3,…                                                                              …(3.4.9) 

             where   𝜇 =  max {  
𝛼+2𝛽+𝛾

1−𝛾
 , 

𝛼+𝛽+2𝛾

1−𝛽
 }  < 1  

From  (3.4.6)  &  (3.4.9) we get  λ n+1   ≤  𝜇  λn  ∀ n  with  𝜇 < 1 

   ∴  λ n  is Cauchy. 

Hence by Lemma 3.1, { 𝑥𝑛 } is a Cauchy sequence in X. Since X is complete,  

there exists  a point z ∈ X such that  𝑥𝑛 → z as n →  ∞ .  

∴ By continuity of  f  we get   

𝑥2𝑛+1 = 𝑓 𝑥2𝑛 →  f z  and  𝑥2𝑛+2 = 𝑔 𝑥2𝑛+1 → g z as n →  ∞ . 

Hence   f z = z and g z = z . Thus, z is a fixed point of  f and g. 

Suppose that z ∈ X is any point satisfying  f z = g z = z 

Then       𝑞 (𝑧, 𝑧)   = 𝑞 (𝑓𝑧, 𝑔𝑧)    

                              ≤ 𝛼𝑞(𝑧, 𝑧) + 𝛽𝑞(𝑧, 𝑔𝑧) + 𝛾𝑞(𝑧, 𝑓𝑧) 

                               =  𝛼𝑞(𝑧, 𝑧) + 𝛽𝑞(𝑧, 𝑧) + 𝛾𝑞(𝑧, 𝑧) 

                               =  (𝛼 + 𝛽 + 𝛾) 𝑞(𝑧, 𝑧) 

                                <  𝑞(𝑧, 𝑧)      ( ∵  𝛼 + 𝛽 + 𝛾 <  𝛼 + 2𝛽 + 2𝛾 < 1 ) 

                   ⟹  𝑞 (𝑧, 𝑧) = 0 
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Now we show that theorem 2.17 is a simple consequence of theorem 3.4. 

Corollary 3.5 : (H. Rahimi  , G. Soleimani Rad [22], Theorem 3.3 ) 

                     Let (X,≤) be a partially ordered set and (X,d) be a complete cone metric space. 

Also, let q be a c-distance on X and 𝑓, 𝑔 : X → X be two continuous and weakly increasing 

mappings with respect to ≤. Suppose that there exist mappings  

α,β,γ : X → [0,1) such that the following  five  conditions hold :  

(t1) α(𝑓𝑥) ≤ α(𝑥), β(𝑓𝑥) ≤ β(𝑥) and γ(𝑓𝑥) ≤ γ(𝑥) for all 𝑥 ∈ X 

(t2) α(𝑔𝑥) ≤ α(𝑥), β(𝑔𝑥) ≤ β(𝑥) and γ(𝑔𝑥) ≤ γ(𝑥) for all 𝑥 ∈ X  

(t3) (α + 2β + 2γ)(x) < 1 for all 𝑥 ∈ X;  

(t4) for all comparable 𝑥, 𝑦 ∈ X,  

             𝑞( 𝑓𝑥, 𝑔𝑦 )  ≤  𝛼(𝑥) 𝑞(𝑥, 𝑦) +  𝛽(𝑥) 𝑞(𝑥, 𝑔𝑦) +  𝛾(𝑥) 𝑞(𝑦, 𝑓𝑥)                        …(3.5.1) 

 (t5) for all comparable x,y ∈ X,  

             𝑞( 𝑔𝑦, 𝑓𝑥 )  ≤  𝛼(𝑥) 𝑞(𝑦, 𝑥) +  𝛽(𝑥) 𝑞(𝑔𝑦, 𝑥) +  𝛾(𝑥) 𝑞(𝑓𝑥, 𝑦)                        …(3.5.2) 

Suppose there exists x0 ∈ X such that x0 ≤  fx0.   

Then  𝑓 and 𝑔 have a common fixed point.  Moreover, if 𝑓𝑧 = 𝑔𝑧 = 𝑧, 

 then  𝑞(𝑧, 𝑧) = 0. 

Proof. :  Let 𝛼 = 𝛼(𝑥0) , 𝛽 = 𝛽(𝑥0), 𝛾 = 𝛾(𝑥0) 

Then take  x = x2n ,  y = x2m+1   in (3.5.1) we get 

q(𝑥2𝑛+1 , 𝑥2𝑚+2)  

= q(𝑓𝑥2𝑛 , 𝑔𝑥2𝑚+1) 

≤ 𝛼(𝑥2𝑛 )𝑞(𝑥2𝑛 , 𝑥2𝑚+1) + 𝛽(𝑥2𝑛 )𝑞(𝑥2𝑛, 𝑥2𝑚+2) + 𝛾(𝑥2𝑛 )𝑞(𝑥2𝑚+1, 𝑥2𝑛+1) 

≤  𝛼(𝑥0 )𝑞(𝑥2𝑛 , 𝑥2𝑚+1) + 𝛽(𝑥0 )𝑞(𝑥2𝑛, 𝑥2𝑚+2) + 𝛾(𝑥0 )𝑞(𝑥2𝑚+1, 𝑥2𝑛+1)              

                                                                 ( ∵ 𝛼(𝑥2n)  ≤  𝛼(𝑥0)  for n = 1,2,3,…) 
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 = 𝛼 𝑞(𝑥2𝑛 , 𝑥2𝑚+1) + 𝛽 𝑞(𝑥2𝑛, 𝑥2𝑚+2) + 𝛾 𝑞(𝑥2𝑚+1, 𝑥2𝑛+1)                          

                                      where  𝛼 = 𝛼(𝑥0) , 𝛽 = 𝛽(𝑥0)  and  𝛾 = 𝛾(𝑥0) 

∴   q(𝑥2𝑛+1 , 𝑥2𝑚+2) ≤ 

𝛼𝑞(𝑥2𝑛 , 𝑥2𝑚+1) + 𝛽𝑞(𝑥2𝑛, 𝑥2𝑚+2) + 𝛾𝑞(𝑥2𝑚+1, 𝑥2𝑛+1)                                              …(3.5.3)       

Similarly from (3.5.2) we get 

 q(𝑥2𝑚+2 , 𝑥2𝑛+1) ≤   

𝛼𝑞(𝑥2𝑚+1 , 𝑥2𝑛) + 𝛽𝑞(𝑥2𝑚+2, 𝑥2𝑛) +  𝛾𝑞(𝑥2𝑛+1, 𝑥2𝑚+1)                                              …(3.5.4) 

Combining (3.5.3) and (3.5.4) follows that the hypothesis of Theorem 3.4 is satisfied. Hence 

from theorem 3.4 the result follows. 
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